Experimental results on the primary carburization reaction between the tungsten powder and methane in the induction plasma, and the secondary carburization of the deposit on substrate at high temperature are reported....Experimental results on the primary carburization reaction between the tungsten powder and methane in the induction plasma, and the secondary carburization of the deposit on substrate at high temperature are reported. Optical microscopy and scanning electron microscopy were used to examine the microstructures of starting tungsten powder, carburized powder, and deposit. X-ray diffraction analysis, thermal gravimetric analysis and microhardness measurement were used to characterize the structures and properties of the powder and the deposit. It is found that the primary carburization reaction in the induction plasma starts from the surface of tungsten particles when the particles are melted. Tungsten particles are partially carburized inside the reactive plasma. Complete carburization is achieved through the secondary carburization reaction of the deposit on substrate at high temperature.展开更多
An improved wax based multi component binder and a new debinding method termed high pressure condensed solvent extraction were developed for powder injection molding of tungsten cemented carbide. The results indicate ...An improved wax based multi component binder and a new debinding method termed high pressure condensed solvent extraction were developed for powder injection molding of tungsten cemented carbide. The results indicate that a critical powder loading of 65% (volume fraction) and an ideal rheological properties were obtained by the feedstock based on the binder. High debinding rate and specimens with high strength were obtained by the debinding method. Moreover, by making high temperature holding time adjustable, it makes the subsequent thermal degradation process more flexible to debinding atmosphere and carbon content of the as debinded specimens controllable. The transverse rupture strength, hardness and density of the as sintered specimens made by an optimized PIM process are 2.48 GPa, HRA90 and 14.72 g/cm 3, respectively. Good shape retention and about 0.02% dimension deviation were achieved.展开更多
A Ni-based alloy coating with 30 wt.%spherical fungsten carbide particles was prepared through plasma transferred arc welding on 42CrMo steel.The composition and microstructure of the coati ng were examined through X-...A Ni-based alloy coating with 30 wt.%spherical fungsten carbide particles was prepared through plasma transferred arc welding on 42CrMo steel.The composition and microstructure of the coati ng were examined through X-ray diffraction and scanning electron microscopy with energy-dispersive spectrometry.The corrosion behaviors of the coating compared to the Ni coating without tungsten carbide particles and to the bare substrate in a0.5 mol/L HC1 solution were presented through polarization curves,electrochemical impedance spectroscopy(EIS)measurements and long-term immersion tests.The results demonstrated that the composite coating microstructure comprised Ni matrix,Ni-rich phase,tungsten carbide particles,W-rich phase and Cr-rich phase.The polarization curves and EIS measurements presented that a passivation film,which mainly included Ni,Cr,Fe and W oxides,was formed in the composite coating that protected the substrate from corrosion by HC1 solution.In the immersion tests,a micro-galvanic reaction at the new-formed phases and Ni matrix interface caused severe pit corrosion and Ni matrix consumption.The debonding of Ni-rich and W-rich phases could be observed with the immersion time extension.The tungsten carbide particles and Cr-rich phase were still attached on the surface for up to 30 days.展开更多
Lower WC grain sizes in the nanometer range have positive effects on the properties of hardmetals(e.g.,hardness),but the established production processes of WC are limited to grain sizes of about 150 nm.To produce WC ...Lower WC grain sizes in the nanometer range have positive effects on the properties of hardmetals(e.g.,hardness),but the established production processes of WC are limited to grain sizes of about 150 nm.To produce WC powder with grain sizes in the lower nanometer range,an alternative WC production process based on the chemical vapor transport(CVT) reaction of WO_(3) and H_(2)O forming gaseous WO_(2)(OH)_(2) at about 1100 ℃,followed by a carburation reaction with H_(2)/CH_(4)-gas mixtures was investigated.The influences of different process parameters such as furnace temperature,humidity and gas flows were investigated to improve the process.With the right set of parameters the produced powder consisted mainly of agglomerated WC grains with a size of about 5 nm.Beside the common hexagonal WC phase,the cubic WC1-xphase was stabilized due to the small crystallite sizes.In addition,a thin layer of amorphous carbon was present on the powder surface due to the catalytic methane decomposition on the WC surface.The amount of oxidic and metallic residues in the product powder was minimized with the parameter optimization and the powder yield was increased up to about 50%.With further optimization of the process parameters and usage of improved flow breakers,the purity and yield of the product powder can be further improved.Since an application in the hardmetal section is not realistic at the moment,applications in the catalysis sector could be considered due to the small grain size and good catalytic activity of the cubic WC1-xphase.展开更多
文摘Experimental results on the primary carburization reaction between the tungsten powder and methane in the induction plasma, and the secondary carburization of the deposit on substrate at high temperature are reported. Optical microscopy and scanning electron microscopy were used to examine the microstructures of starting tungsten powder, carburized powder, and deposit. X-ray diffraction analysis, thermal gravimetric analysis and microhardness measurement were used to characterize the structures and properties of the powder and the deposit. It is found that the primary carburization reaction in the induction plasma starts from the surface of tungsten particles when the particles are melted. Tungsten particles are partially carburized inside the reactive plasma. Complete carburization is achieved through the secondary carburization reaction of the deposit on substrate at high temperature.
文摘An improved wax based multi component binder and a new debinding method termed high pressure condensed solvent extraction were developed for powder injection molding of tungsten cemented carbide. The results indicate that a critical powder loading of 65% (volume fraction) and an ideal rheological properties were obtained by the feedstock based on the binder. High debinding rate and specimens with high strength were obtained by the debinding method. Moreover, by making high temperature holding time adjustable, it makes the subsequent thermal degradation process more flexible to debinding atmosphere and carbon content of the as debinded specimens controllable. The transverse rupture strength, hardness and density of the as sintered specimens made by an optimized PIM process are 2.48 GPa, HRA90 and 14.72 g/cm 3, respectively. Good shape retention and about 0.02% dimension deviation were achieved.
文摘A Ni-based alloy coating with 30 wt.%spherical fungsten carbide particles was prepared through plasma transferred arc welding on 42CrMo steel.The composition and microstructure of the coati ng were examined through X-ray diffraction and scanning electron microscopy with energy-dispersive spectrometry.The corrosion behaviors of the coating compared to the Ni coating without tungsten carbide particles and to the bare substrate in a0.5 mol/L HC1 solution were presented through polarization curves,electrochemical impedance spectroscopy(EIS)measurements and long-term immersion tests.The results demonstrated that the composite coating microstructure comprised Ni matrix,Ni-rich phase,tungsten carbide particles,W-rich phase and Cr-rich phase.The polarization curves and EIS measurements presented that a passivation film,which mainly included Ni,Cr,Fe and W oxides,was formed in the composite coating that protected the substrate from corrosion by HC1 solution.In the immersion tests,a micro-galvanic reaction at the new-formed phases and Ni matrix interface caused severe pit corrosion and Ni matrix consumption.The debonding of Ni-rich and W-rich phases could be observed with the immersion time extension.The tungsten carbide particles and Cr-rich phase were still attached on the surface for up to 30 days.
文摘Lower WC grain sizes in the nanometer range have positive effects on the properties of hardmetals(e.g.,hardness),but the established production processes of WC are limited to grain sizes of about 150 nm.To produce WC powder with grain sizes in the lower nanometer range,an alternative WC production process based on the chemical vapor transport(CVT) reaction of WO_(3) and H_(2)O forming gaseous WO_(2)(OH)_(2) at about 1100 ℃,followed by a carburation reaction with H_(2)/CH_(4)-gas mixtures was investigated.The influences of different process parameters such as furnace temperature,humidity and gas flows were investigated to improve the process.With the right set of parameters the produced powder consisted mainly of agglomerated WC grains with a size of about 5 nm.Beside the common hexagonal WC phase,the cubic WC1-xphase was stabilized due to the small crystallite sizes.In addition,a thin layer of amorphous carbon was present on the powder surface due to the catalytic methane decomposition on the WC surface.The amount of oxidic and metallic residues in the product powder was minimized with the parameter optimization and the powder yield was increased up to about 50%.With further optimization of the process parameters and usage of improved flow breakers,the purity and yield of the product powder can be further improved.Since an application in the hardmetal section is not realistic at the moment,applications in the catalysis sector could be considered due to the small grain size and good catalytic activity of the cubic WC1-xphase.