The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion...The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion tests and microscopy techniques.Results show that the dissimilar joints exhibit strong stress corrosion cracking(SCC)resistance,maintaining substantial strength during slow strain rate tensile tests.Notably,the heat-affected zone(HAZ)and base metal(BM)on the 6005A+Sc side show superior performance in terms of inter-granular corrosion(IGC)and exfoliation corrosion(EXCO)compared to the corresponding zones on the 5083 side.The lower corrosion resistance of the 5083-BM and the 5083-HAZ can be attributed to the presence of numerous Al_(2)Mg_(3)phases and micro-scaled Al_(6)(Mn,Fe)intermetallics,mainly distributed along the rolling direction.Conversely,the enhanced corrosion resistance of the 6005A+Sc-BM and the 6005A+Sc-HAZ can be attributed to the discontinuously distributed grain boundary precipitates(β-Mg_(2)Si),the smaller grain size,and the reduced corrosive current density.展开更多
A series of Zn-xAl(x=0-35 wt.%)alloy filler metals were designed to join AZ31 Mg alloy to 6061 Al alloy by laser-TIG hybrid welding.The effect of Al content on the wettability of filler metals,microstructure evolution...A series of Zn-xAl(x=0-35 wt.%)alloy filler metals were designed to join AZ31 Mg alloy to 6061 Al alloy by laser-TIG hybrid welding.The effect of Al content on the wettability of filler metals,microstructure evolution and strength of joint was investigated.The results indicated that the strength of joints was improved with the increase of Al content in filler metals.When Zn-15Al filler was used,the ultimate fracture load reached the maximum of 1475.3 N/cm,which was increased by 28%than that with pure Zn filler.The reason is that the Al element acts as a"reaction depressant"in filler metal,which contributes to inhibiting the dissolution of Mg base metal and the Mg-Zn reaction.The addition of appropriate quantity of Al element promoted the precipitation of Al-rich solid solution instead of Zn solid solution.The MgZn_(2) IMCs have lower lattice mismatch with Al solid solution than Zn solid solution,thus the strength of joints is improved.However,the excessive addition of Al caused the formation of brittle Mg32(Al,Zn)49 ternary compounds,leading to the deterioration of joint performance.展开更多
In this paper, the effect of carbon migration on creep properties of Cr5Mo dissimilar welded joints with Ni-based (Inconel 182) and Cr23Nil3 (A302) austenitic weld metal was investigated. Carbon migration near the wel...In this paper, the effect of carbon migration on creep properties of Cr5Mo dissimilar welded joints with Ni-based (Inconel 182) and Cr23Nil3 (A302) austenitic weld metal was investigated. Carbon migration near the weld metal/ferritic steel interface of Cr5Mo dissimilar welded joints was analyzed by aging method. Local creep deformations of the dissimilar welded joints were measured by a long-term local creep deformation measuring technique. The creep rupture testing was performed for Cr5Mo dissimilar welded joints with Inconel 182 and A302 weld metal. The research results show that the maximum creep strain rate occurs in the decarburized zone located on heat affect zone (HAZ) of Cr5Mo ferritic steel. The creep rupture life of Cr5Mo dissimilar welded joints with A 302 weld metal decreases due to carbon migration and is about 50% of that welded with Inconel 182 weld metal.展开更多
To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was an...To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was analyzed by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM).The evaluation of intergranular corrosion resistance of the welded joints was conducted by double-loop electrochemical potentiokinetic reactivation(DL-EPR) method,and at the same time the chemical compositions of the corrosion surface were analyzed by energy-dispersive spectrometry (EDS).The results show that p phase has complete coherence relationship withμphase,and the coherent relationship is described as[001]p//■and[430]p//[0001]μ.Theμphase is rapidly transformed from p phase,which is the inhomogeneous phase transformation.The transformation of secondary phase will increase the susceptibility to intergranular corrosion.Therefore,the transformation of secondary phase should be avoided in the welding process.展开更多
The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, ...The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, and sound welds were obtained at a rotation speed of 1000 r/min and a welding speed of 80 mm/min. Complicated microstructure was formed in the nugget, in which vortex-like pattern and lamella structure could be found. No intermetallic compounds were found in the nugget. The hardness distribution indicates that the hardness at the copper side of the nugget is higher than that at the aluminum alloy side, and the hardness at the bottom of the nugget is generally higher than that in other regions. The ultimate tensile strength and elongation of the dissimilar welds are 152 MPa and 6.3%, respectively. The fracture surface observation shows that the dissimilar joints fail with a ductile-brittle mixed fracture mode durin~ tensile test.展开更多
Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent...Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone.展开更多
Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,...Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,fatigue resistance,and high-temperature strength.Linear friction welding(LFW)is a new joining technology with near-net-forming characteristics that can be used for the manu-facture and repair of a wide range of aerospace components.This paper reviews published works on LFW of Ni-based superalloys with the aim of understanding the characteristics of frictional heat generation and extrusion deformation,microstructures,mechanical proper-ties,flash morphology,residual stresses,creep,and fatigue of Ni-based superalloy weldments produced with LFW to enable future optim-um utilization of the LFW process.展开更多
Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properti...Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17(γ) and Al3Mg2(β) at the welding zone with a thickness(< 3.5 μm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint.展开更多
Laser-metal inert-gas(MIG)hybrid welding-brazing was applied to the butt joint of 6061-T6 aluminum alloy and 304 stainless steel.The microstructure and mechanical properties of the joint were studied.An excellent join...Laser-metal inert-gas(MIG)hybrid welding-brazing was applied to the butt joint of 6061-T6 aluminum alloy and 304 stainless steel.The microstructure and mechanical properties of the joint were studied.An excellent joint-section shape was achieved from good wettability on both sides of the stainless steel.Scanning electron microscopy,energy-dispersive spectroscopy and X-ray diffractometry indicated an intermetallic compound(IMC)layer at the 6061-T6/304 interface.The IMC thickness was controlled to be^2μm,which was attributed to the advantage of the laser-MIG hybrid method.Fe3Al dominated in the IMC layer at the interface between the stainless steel and the back reinforcement.The IMC layer in the remaining regions consisted mainly of Fe4Al13.A thinner IMC layer and better wettability on both sides of the stainless steel were obtained,because of the optimized energy distribution from a combination of a laser beam with a MIG arc.The average tensile strength of the joint with reinforcement using laser-MIG hybrid process was improved to be 174 MPa(60%of the 6061-T6 tensile strength),which was significantly higher than that of the joint by traditional MIG process.展开更多
A new welding electrode, low transformation temperature electrode (LTTE), was introduced in this paper. It was described in design principle, mechanics, chemical compositions of their deposited metal and manufacturing...A new welding electrode, low transformation temperature electrode (LTTE), was introduced in this paper. It was described in design principle, mechanics, chemical compositions of their deposited metal and manufacturing methods. It was proved that the best transformation starting temperature from austenite to martensite of the deposited metal of LTTE was at about 191℃ and it was obtained by adding alloying elements such as Cr, Ni, Mn and Mo. The microstructure of the weld metal of the LTTE was low carbon martensite and residual austenite. The compressive residual stress was induced around the weld of the LTTE and the -145 MPa in compression could be obtained in middle of weld metal. The fatigue tests showed that the fatigue strength of the longitudinal welded joints welded with the LTTE at 2×106 cycles was improved by 59% compared with that of the same type of welded joints welded with conventional E5015 and the fatigue life was increased by 47 times at 162 MPa. It is a very valuable method to improve the fatigue performance of welded joints.展开更多
Friction stir welding(FSW) is a solid state joining technique developed to join high strength aluminum alloys and various ceramic reinforced metal matrix composites(MMCs).FSW produces sound welds in MMCs without a...Friction stir welding(FSW) is a solid state joining technique developed to join high strength aluminum alloys and various ceramic reinforced metal matrix composites(MMCs).FSW produces sound welds in MMCs without any deleterious reaction between reinforcement and matrix.The present work focused on the effect of FSW parameters on the tensile strength of Al-B4C composite joints.The central composite design of four factors and five levels was used to control the number of experiments.A mathematical model was developed to analyze the influence of FSW parameters.The results indicated that the joint fabricated using rotational speed of 1000 r/min,welding speed of 1.3 mm/s,axial force of 10 kN and the reinforcement of 12% showed larger tensile strength compared with the other joints.The developed model was optimized to maximize the tensile strength using generalized reduced gradient method.The metallographic analysis of the joints showed the presence of various zones such as weld nugget(WN) zone,thermo mechanically affected zone(TMAZ) and heat affected zone(HAZ).The substantial grain refinement of aluminum matrix as well as significant size reduction of B4C particles was observed in the weld nugget.TMAZ was plastically deformed,thermally affected and exhibited elongated aluminum grains.展开更多
Electron beam welding of titanium alloy to aluminum alloy was carried out by melting and melt-brazing to investigate the effects of welding parameters on microstructure of the joint. The results indicated that the joi...Electron beam welding of titanium alloy to aluminum alloy was carried out by melting and melt-brazing to investigate the effects of welding parameters on microstructure of the joint. The results indicated that the joint of the specimen welded by melting was well-formed but contained a large amount of intermetallic compounds. These intermetallic compounds were mainly composed of brittle phases such as TiAl and TiAl3 that decreased the ductility of the joints and resulted in a tensile strength 50 % lower than that of the base metal. In the melt-brazing experiment, direct heat was applied to the aluminum alloy to melt the aluminum rather than the titanium alloy, creating a well-formed joint. The weld was mainly composed of Al element and only a 3 ~m thickness of intermetallic compounds formed near the fusion line at the Ti side. The ductility and the performauce of the joint were significantly improved compared with those of the melting-only joint. In addition, the tensile strength of the joint reached 80 % of that of the aluminum base metal.展开更多
In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er...In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er on the microstructure and mechanical properties of the welded joints was analyzed by optical microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, hardness testing, and tensile mechanical properties testing. Systematic analyses indicate that the addition of trace amounts of Er and Zr leads to the formation of fine Al3Er, Al3Zr, and Al3(Zr,Er) phases that favor significant grain refinement in the weld zone. Besides, the tensile strength and hardness of the welded joints were obviously improved with the addition of Er and Zr, as evidenced by the increase in tensile strength and elongation by 40 MPa and 1.4%, respectively, and by the welding coefficient of 73%.展开更多
The welding joints of Zircaloy 4 plates obtained by diffusion welding at 800°C under pressure in vacuum were cracked during autoclave tests at 400°C superheated steam after exposure longer than 150 days. T...The welding joints of Zircaloy 4 plates obtained by diffusion welding at 800°C under pressure in vacuum were cracked during autoclave tests at 400°C superheated steam after exposure longer than 150 days. The section of specimens was examined by optical microscopy and the composition at the tips of cracking was analyzed by electron microprobe. The result shows that the combination of oxidation and hydriding induced cracking is responsible for this failure of the welding joints.展开更多
This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper...This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.展开更多
The microstructure of butt welding joint of supper eutectic ZA alloy in TIG welding was analyzed through optical microscope and transmission electronic microscope. The results show that the weld seam microstructure is...The microstructure of butt welding joint of supper eutectic ZA alloy in TIG welding was analyzed through optical microscope and transmission electronic microscope. The results show that the weld seam microstructure is fine and mainly composed of columnar crystals and minor equiaxed crystals, the microstructure in the zone near the weld seam is coarse columnar crystals, and the grain in heat affected zone does not grow markedly. The joint microstructure at room temperature is consisted of β phase (rich Al), η Zn, ε phase (CuZn compound), Al 4Cu 9 and other compounds. The hardness of the weld bond area and the tensile strength of the joint are a little higher than that of base materials. The specific elongation of the weld and bond area is a little lower than those of base materials. [展开更多
The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments...The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.展开更多
The corrosion fatigue fracture mechanism of friction stir welding(FSW) joints of 7075 aluminium alloy in3.5% NaCl solution is investigated. The corrosion fatigue crack source originates from the junction of nugget zon...The corrosion fatigue fracture mechanism of friction stir welding(FSW) joints of 7075 aluminium alloy in3.5% NaCl solution is investigated. The corrosion fatigue crack source originates from the junction of nugget zone(NZ)and thermo-mechanical affected zone(TMAZ). Multiple crack sources are developed at the same time, and they merge into large cracks along the boundary line of NZ and TMAZ during the propagation stage. Furthermore, a mutual reinforcement coupling always exists between corrosion and cyclic loading during the initiation and propagation of corrosion fatigue crack. It is necessary to consider the effect of welding residual stress for understanding the mechanism of corrosion fatigue fracture of FSW joints.展开更多
The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,t...The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,three calculation methods for the temperature field are given.First,the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement.Second,the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment.Third,Matlab software is used to calculate the temperature of the non-measured part.Finally,the temperature distribution function along the rail axis is fitted through the temperature measurement data.The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production.展开更多
Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint ...Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.展开更多
基金financially supported by the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3055)the Natural Science Foundation of Hunan Province,China(Nos.2023JJ30671,2020JJ4114)+5 种基金the Natural Science Foundation of Changsha City,China(No.Kq2208264)National Key Project of Research and Development Plan of China(Nos.2021YFC1910505,2021YFC1910504)the Young Core Teacher Foundation of Hunan Province,China(No.150220001)Key Research and Development Program of Guangdong Province,China(No.2020B010186002)the National Natural Science Foundation of China(No.51601229)the Key-Area Research and Development Program of Foshan City,China(No.2230032004640).
文摘The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion tests and microscopy techniques.Results show that the dissimilar joints exhibit strong stress corrosion cracking(SCC)resistance,maintaining substantial strength during slow strain rate tensile tests.Notably,the heat-affected zone(HAZ)and base metal(BM)on the 6005A+Sc side show superior performance in terms of inter-granular corrosion(IGC)and exfoliation corrosion(EXCO)compared to the corresponding zones on the 5083 side.The lower corrosion resistance of the 5083-BM and the 5083-HAZ can be attributed to the presence of numerous Al_(2)Mg_(3)phases and micro-scaled Al_(6)(Mn,Fe)intermetallics,mainly distributed along the rolling direction.Conversely,the enhanced corrosion resistance of the 6005A+Sc-BM and the 6005A+Sc-HAZ can be attributed to the discontinuously distributed grain boundary precipitates(β-Mg_(2)Si),the smaller grain size,and the reduced corrosive current density.
基金supported by the National Natural Science Funds of China(No.52175290 and No.51975090).
文摘A series of Zn-xAl(x=0-35 wt.%)alloy filler metals were designed to join AZ31 Mg alloy to 6061 Al alloy by laser-TIG hybrid welding.The effect of Al content on the wettability of filler metals,microstructure evolution and strength of joint was investigated.The results indicated that the strength of joints was improved with the increase of Al content in filler metals.When Zn-15Al filler was used,the ultimate fracture load reached the maximum of 1475.3 N/cm,which was increased by 28%than that with pure Zn filler.The reason is that the Al element acts as a"reaction depressant"in filler metal,which contributes to inhibiting the dissolution of Mg base metal and the Mg-Zn reaction.The addition of appropriate quantity of Al element promoted the precipitation of Al-rich solid solution instead of Zn solid solution.The MgZn_(2) IMCs have lower lattice mismatch with Al solid solution than Zn solid solution,thus the strength of joints is improved.However,the excessive addition of Al caused the formation of brittle Mg32(Al,Zn)49 ternary compounds,leading to the deterioration of joint performance.
基金the supports provided by the National Natural Science Foundation of China(Grant No.10172046)
文摘In this paper, the effect of carbon migration on creep properties of Cr5Mo dissimilar welded joints with Ni-based (Inconel 182) and Cr23Nil3 (A302) austenitic weld metal was investigated. Carbon migration near the weld metal/ferritic steel interface of Cr5Mo dissimilar welded joints was analyzed by aging method. Local creep deformations of the dissimilar welded joints were measured by a long-term local creep deformation measuring technique. The creep rupture testing was performed for Cr5Mo dissimilar welded joints with Inconel 182 and A302 weld metal. The research results show that the maximum creep strain rate occurs in the decarburized zone located on heat affect zone (HAZ) of Cr5Mo ferritic steel. The creep rupture life of Cr5Mo dissimilar welded joints with A 302 weld metal decreases due to carbon migration and is about 50% of that welded with Inconel 182 weld metal.
基金The authors would like to acknowledge the financial support from National Key Research and Development Program of China(2018YFB1107801 and 2018YFB1107802)Science Fund for Creative Research Groups of NSFC(51621064)+1 种基金National Natural Science Foundation of China(51790172)Fundamental Research Funds for the Central University(DUT19LAB06).
文摘To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was analyzed by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM).The evaluation of intergranular corrosion resistance of the welded joints was conducted by double-loop electrochemical potentiokinetic reactivation(DL-EPR) method,and at the same time the chemical compositions of the corrosion surface were analyzed by energy-dispersive spectrometry (EDS).The results show that p phase has complete coherence relationship withμphase,and the coherent relationship is described as[001]p//■and[430]p//[0001]μ.Theμphase is rapidly transformed from p phase,which is the inhomogeneous phase transformation.The transformation of secondary phase will increase the susceptibility to intergranular corrosion.Therefore,the transformation of secondary phase should be avoided in the welding process.
基金Project (2009ZM0264) supported by the Fundamental Research Funds for the Central Universities,China
文摘The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, and sound welds were obtained at a rotation speed of 1000 r/min and a welding speed of 80 mm/min. Complicated microstructure was formed in the nugget, in which vortex-like pattern and lamella structure could be found. No intermetallic compounds were found in the nugget. The hardness distribution indicates that the hardness at the copper side of the nugget is higher than that at the aluminum alloy side, and the hardness at the bottom of the nugget is generally higher than that in other regions. The ultimate tensile strength and elongation of the dissimilar welds are 152 MPa and 6.3%, respectively. The fracture surface observation shows that the dissimilar joints fail with a ductile-brittle mixed fracture mode durin~ tensile test.
基金Project (2011BAB206006) supported by the Natural Science Foundation of Jiangxi Province,ChinaProject (2009ZE56011) supported by the Aviation Science Funds of ChinaProject (GJJ12411) supported by the Education Department of Jiangxi Province,China
文摘Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone.
基金supported by the National Natural Science Foundation of China(Nos.52074228,52305420,and 51875470)the China Postdoctoral Science Foundation(No.2023M742830)the Xi’an Beilin District Science and Technology Planning Project,China(No.GX2349).
文摘Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion,radiation,fatigue resistance,and high-temperature strength.Linear friction welding(LFW)is a new joining technology with near-net-forming characteristics that can be used for the manu-facture and repair of a wide range of aerospace components.This paper reviews published works on LFW of Ni-based superalloys with the aim of understanding the characteristics of frictional heat generation and extrusion deformation,microstructures,mechanical proper-ties,flash morphology,residual stresses,creep,and fatigue of Ni-based superalloy weldments produced with LFW to enable future optim-um utilization of the LFW process.
基金Universiti Kebangsaan Malaysia for supporting this research project through the research funding (AP-2015-016)
文摘Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17(γ) and Al3Mg2(β) at the welding zone with a thickness(< 3.5 μm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint.
基金Project(51405398) supported by the National Natural Science Foundation of China
文摘Laser-metal inert-gas(MIG)hybrid welding-brazing was applied to the butt joint of 6061-T6 aluminum alloy and 304 stainless steel.The microstructure and mechanical properties of the joint were studied.An excellent joint-section shape was achieved from good wettability on both sides of the stainless steel.Scanning electron microscopy,energy-dispersive spectroscopy and X-ray diffractometry indicated an intermetallic compound(IMC)layer at the 6061-T6/304 interface.The IMC thickness was controlled to be^2μm,which was attributed to the advantage of the laser-MIG hybrid method.Fe3Al dominated in the IMC layer at the interface between the stainless steel and the back reinforcement.The IMC layer in the remaining regions consisted mainly of Fe4Al13.A thinner IMC layer and better wettability on both sides of the stainless steel were obtained,because of the optimized energy distribution from a combination of a laser beam with a MIG arc.The average tensile strength of the joint with reinforcement using laser-MIG hybrid process was improved to be 174 MPa(60%of the 6061-T6 tensile strength),which was significantly higher than that of the joint by traditional MIG process.
基金This project was supported by the National Natural Science Foundation of China under grant No.50175079.
文摘A new welding electrode, low transformation temperature electrode (LTTE), was introduced in this paper. It was described in design principle, mechanics, chemical compositions of their deposited metal and manufacturing methods. It was proved that the best transformation starting temperature from austenite to martensite of the deposited metal of LTTE was at about 191℃ and it was obtained by adding alloying elements such as Cr, Ni, Mn and Mo. The microstructure of the weld metal of the LTTE was low carbon martensite and residual austenite. The compressive residual stress was induced around the weld of the LTTE and the -145 MPa in compression could be obtained in middle of weld metal. The fatigue tests showed that the fatigue strength of the longitudinal welded joints welded with the LTTE at 2×106 cycles was improved by 59% compared with that of the same type of welded joints welded with conventional E5015 and the fatigue life was increased by 47 times at 162 MPa. It is a very valuable method to improve the fatigue performance of welded joints.
基金Naval Research Board, DRDO, Govt. of INDIA, vide funded projectRef. no. DNRD/05/4003/NRB/85 dt 30.10.2006 for sponsoring FSW machine
文摘Friction stir welding(FSW) is a solid state joining technique developed to join high strength aluminum alloys and various ceramic reinforced metal matrix composites(MMCs).FSW produces sound welds in MMCs without any deleterious reaction between reinforcement and matrix.The present work focused on the effect of FSW parameters on the tensile strength of Al-B4C composite joints.The central composite design of four factors and five levels was used to control the number of experiments.A mathematical model was developed to analyze the influence of FSW parameters.The results indicated that the joint fabricated using rotational speed of 1000 r/min,welding speed of 1.3 mm/s,axial force of 10 kN and the reinforcement of 12% showed larger tensile strength compared with the other joints.The developed model was optimized to maximize the tensile strength using generalized reduced gradient method.The metallographic analysis of the joints showed the presence of various zones such as weld nugget(WN) zone,thermo mechanically affected zone(TMAZ) and heat affected zone(HAZ).The substantial grain refinement of aluminum matrix as well as significant size reduction of B4C particles was observed in the weld nugget.TMAZ was plastically deformed,thermally affected and exhibited elongated aluminum grains.
文摘Electron beam welding of titanium alloy to aluminum alloy was carried out by melting and melt-brazing to investigate the effects of welding parameters on microstructure of the joint. The results indicated that the joint of the specimen welded by melting was well-formed but contained a large amount of intermetallic compounds. These intermetallic compounds were mainly composed of brittle phases such as TiAl and TiAl3 that decreased the ductility of the joints and resulted in a tensile strength 50 % lower than that of the base metal. In the melt-brazing experiment, direct heat was applied to the aluminum alloy to melt the aluminum rather than the titanium alloy, creating a well-formed joint. The weld was mainly composed of Al element and only a 3 ~m thickness of intermetallic compounds formed near the fusion line at the Ti side. The ductility and the performauce of the joint were significantly improved compared with those of the melting-only joint. In addition, the tensile strength of the joint reached 80 % of that of the aluminum base metal.
文摘In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er on the microstructure and mechanical properties of the welded joints was analyzed by optical microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, hardness testing, and tensile mechanical properties testing. Systematic analyses indicate that the addition of trace amounts of Er and Zr leads to the formation of fine Al3Er, Al3Zr, and Al3(Zr,Er) phases that favor significant grain refinement in the weld zone. Besides, the tensile strength and hardness of the welded joints were obviously improved with the addition of Er and Zr, as evidenced by the increase in tensile strength and elongation by 40 MPa and 1.4%, respectively, and by the welding coefficient of 73%.
文摘The welding joints of Zircaloy 4 plates obtained by diffusion welding at 800°C under pressure in vacuum were cracked during autoclave tests at 400°C superheated steam after exposure longer than 150 days. The section of specimens was examined by optical microscopy and the composition at the tips of cracking was analyzed by electron microprobe. The result shows that the combination of oxidation and hydriding induced cracking is responsible for this failure of the welding joints.
文摘This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.
文摘The microstructure of butt welding joint of supper eutectic ZA alloy in TIG welding was analyzed through optical microscope and transmission electronic microscope. The results show that the weld seam microstructure is fine and mainly composed of columnar crystals and minor equiaxed crystals, the microstructure in the zone near the weld seam is coarse columnar crystals, and the grain in heat affected zone does not grow markedly. The joint microstructure at room temperature is consisted of β phase (rich Al), η Zn, ε phase (CuZn compound), Al 4Cu 9 and other compounds. The hardness of the weld bond area and the tensile strength of the joint are a little higher than that of base materials. The specific elongation of the weld and bond area is a little lower than those of base materials. [
基金Project(CXLX14-1098)supported by Jiangsu Province Postgraduate Scientific Research Innovation Program,China
文摘The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.
基金Project(KYGYJQZL2204) supported by the Basic Frontier Science and Technology Innovation Project of Army Engineering University of PLA,ChinaProjects(30110010403, 30110030103) supported by the Preliminary Research of Equipment,China。
文摘The corrosion fatigue fracture mechanism of friction stir welding(FSW) joints of 7075 aluminium alloy in3.5% NaCl solution is investigated. The corrosion fatigue crack source originates from the junction of nugget zone(NZ)and thermo-mechanical affected zone(TMAZ). Multiple crack sources are developed at the same time, and they merge into large cracks along the boundary line of NZ and TMAZ during the propagation stage. Furthermore, a mutual reinforcement coupling always exists between corrosion and cyclic loading during the initiation and propagation of corrosion fatigue crack. It is necessary to consider the effect of welding residual stress for understanding the mechanism of corrosion fatigue fracture of FSW joints.
基金supported by the China National Railway Group Corporation Science and Technology Research and Development Program(J2022G009)Dr.Jingjing Li received no grant support.
文摘The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,three calculation methods for the temperature field are given.First,the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement.Second,the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment.Third,Matlab software is used to calculate the temperature of the non-measured part.Finally,the temperature distribution function along the rail axis is fitted through the temperature measurement data.The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production.
文摘Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.