The diffusivity of hydrogen in two Ni3Al alloys (No.1 and No.2) has been measured in the temperature range of 100 degreesC to 420 degreesC using an ultrahigh vacuum gaseous permeation technique. The diffusivity data f...The diffusivity of hydrogen in two Ni3Al alloys (No.1 and No.2) has been measured in the temperature range of 100 degreesC to 420 degreesC using an ultrahigh vacuum gaseous permeation technique. The diffusivity data fall into two segments, in which the hydrogen diffusivity adheres to the Arrhenius form, respectively. From the hydrogen diffusivity, it is conjectured that the hydrogen diffusivity reflects the hydrogen transportation along the grain boundaries at lower temperature and the hydrogen transportation in the lattice at higher temperature. The intergranular fracture of Lit-type intermetallics induced by hydrogen at relative low temperature results from hydrogen transportation along the grain boundaries and not in the lattice.展开更多
The effect of Zr on tensile property, microstructure and fracture behaviour of cast Ni 3Al based alloy strengthened with carbides has been studied. It was found that Zr distributes at interdendrites and grain boundar...The effect of Zr on tensile property, microstructure and fracture behaviour of cast Ni 3Al based alloy strengthened with carbides has been studied. It was found that Zr distributes at interdendrites and grain boundaries in the form of ZrC particle and Ni 5Zr eutectic phase which can refine microstructure. Ni 5Zr phase can alleviate the crack initiation at grain boundaries and dendrite boundaries, which helps deformation to be harmonical between matrix and precipitates at elevated temperature.展开更多
Investigation has been made into the causes of cracking in the Surfacing welding layer of Ni3Al based alloy by analysing both the liqu id-to-solid transformation in the molten pool and the distribution of thermal stre...Investigation has been made into the causes of cracking in the Surfacing welding layer of Ni3Al based alloy by analysing both the liqu id-to-solid transformation in the molten pool and the distribution of thermal stress within the surfacing welding layer. The results show that cracking in the surfacing welding layer is directly related to the producing of eutectic phase β' (NiAl) in the interdendritic region and high thermal stress within the surfacing welding layer. When the process of electric arc surfacing welding is changed from along straight line to along' Z' pattern, cracking in the surfacing welding layer of Ni3Al based alloy is prevented due to being reduced of both the cooling rate of liquid in the molten pool and the moving speed of the heat source. Reducing the melting volume of the substrate material by lowering the output power of electric arc welding would make the content of iron atoms in the molten pool decrease. and this also can reduce the trend of the eutectic reaction in the interdendfitic region and is helpful to Suppress cracking in the surfacing welding layer.展开更多
Cavitation erosion behavior of as-welded Cu12Mn8Al3Fe2Ni alloy in 3.5% NaCl aqueous solution was studied bymagnetostrictive vibratory device for cavitation erosion. The results show that the cavitation erosion resista...Cavitation erosion behavior of as-welded Cu12Mn8Al3Fe2Ni alloy in 3.5% NaCl aqueous solution was studied bymagnetostrictive vibratory device for cavitation erosion. The results show that the cavitation erosion resistance ofthe as-welded Cu12Mn8Al3Fe2Ni alloy is much more superior to that of the as-cast one. The cumulative mass lossand the mass loss rate of the as-welded Cu12Mn8Al3Fe2Ni alloy are almost 1/4 that of the as-cast one. SEM analysisof eroded specimens reveals that the as-cast Cu12Mn8Al3Fe2Ni alloy is attacked more severely than the as-weldedone. Microcracks causing cavitation damage initiate at the phase boundaries.展开更多
In the present research, the dissolution mechanism of a Zr rich structure during annealing of a Ni3Al base alloy containing Cr, Mo, Zr and B, was investigated. The annealing treatments were performed up to 50 h at 900...In the present research, the dissolution mechanism of a Zr rich structure during annealing of a Ni3Al base alloy containing Cr, Mo, Zr and B, was investigated. The annealing treatments were performed up to 50 h at 900, 1000 and 1100℃. The alloy used in this investigation was produced by vacuum-arc remelting technique. The results show that at the beginning of the process, a mixed interface reaction and local equilibrium (long range diffusion) mechanism controls the dissolution process. After a short time, this mechanism changes and the dissolution mechanism of the Zr rich structure changes to only long range diffusion of Zr element. According to this mechanism, the activation energy of this process is estimated to be about 143.3 kJ.mol-1. Also the phases that contribute to this structure and the transformations that occur at the final steps of solidification of this alloy were introduced. According to the results, at the final step of solidification, a peritectic type reaction occurs in the form of L+ y→Ni7Zr2 and →-Ni7Zr2 segregates from the melt. Following this transformation, →-Ni7Zr2 eutectic separates from the remaining Zr rich liquid. The solidification process will be terminated by a ternary eutectic reaction in the form of L→y+Ni5Zr+Ni7Zr2.展开更多
The aim of this paper is to model the yielding asymmetry of pressure-insensitive metals,including but not limited to Ni3 Al alloys.The main focuses are put on the flexibility and manipulative convenience.The parameter...The aim of this paper is to model the yielding asymmetry of pressure-insensitive metals,including but not limited to Ni3 Al alloys.The main focuses are put on the flexibility and manipulative convenience.The parameters of theory are kept to a minimum and can be determined by as few tests as possible.These requirements are fulfilled by constructing a yield function using the second and third-invariants of a linearly transformed stress tensor.The proposed yield criterion has a simple mathematical form and has only seven parameters when used in three-dimensional stresses.Compared with existing theories,the new yield criterion has much fewer parameters,which makes it very convenient for practical applications.The coefficients of the criterion are identified by an error minimization procedure.Applications to a Ni3 Al based intermetallic alloy as well as a Cu-Al-Be shape memory alloy and comparison to other criteria show that the proposed criterion has nearly the same predictive ability and flexibility with other criteria.The proposed yield criterion can estimate the coefficients by using less data,which is a big advantage compared with other similar theories,especially when there is a limited number of experimental data.展开更多
文摘The diffusivity of hydrogen in two Ni3Al alloys (No.1 and No.2) has been measured in the temperature range of 100 degreesC to 420 degreesC using an ultrahigh vacuum gaseous permeation technique. The diffusivity data fall into two segments, in which the hydrogen diffusivity adheres to the Arrhenius form, respectively. From the hydrogen diffusivity, it is conjectured that the hydrogen diffusivity reflects the hydrogen transportation along the grain boundaries at lower temperature and the hydrogen transportation in the lattice at higher temperature. The intergranular fracture of Lit-type intermetallics induced by hydrogen at relative low temperature results from hydrogen transportation along the grain boundaries and not in the lattice.
文摘The effect of Zr on tensile property, microstructure and fracture behaviour of cast Ni 3Al based alloy strengthened with carbides has been studied. It was found that Zr distributes at interdendrites and grain boundaries in the form of ZrC particle and Ni 5Zr eutectic phase which can refine microstructure. Ni 5Zr phase can alleviate the crack initiation at grain boundaries and dendrite boundaries, which helps deformation to be harmonical between matrix and precipitates at elevated temperature.
文摘Investigation has been made into the causes of cracking in the Surfacing welding layer of Ni3Al based alloy by analysing both the liqu id-to-solid transformation in the molten pool and the distribution of thermal stress within the surfacing welding layer. The results show that cracking in the surfacing welding layer is directly related to the producing of eutectic phase β' (NiAl) in the interdendritic region and high thermal stress within the surfacing welding layer. When the process of electric arc surfacing welding is changed from along straight line to along' Z' pattern, cracking in the surfacing welding layer of Ni3Al based alloy is prevented due to being reduced of both the cooling rate of liquid in the molten pool and the moving speed of the heat source. Reducing the melting volume of the substrate material by lowering the output power of electric arc welding would make the content of iron atoms in the molten pool decrease. and this also can reduce the trend of the eutectic reaction in the interdendfitic region and is helpful to Suppress cracking in the surfacing welding layer.
文摘Cavitation erosion behavior of as-welded Cu12Mn8Al3Fe2Ni alloy in 3.5% NaCl aqueous solution was studied bymagnetostrictive vibratory device for cavitation erosion. The results show that the cavitation erosion resistance ofthe as-welded Cu12Mn8Al3Fe2Ni alloy is much more superior to that of the as-cast one. The cumulative mass lossand the mass loss rate of the as-welded Cu12Mn8Al3Fe2Ni alloy are almost 1/4 that of the as-cast one. SEM analysisof eroded specimens reveals that the as-cast Cu12Mn8Al3Fe2Ni alloy is attacked more severely than the as-weldedone. Microcracks causing cavitation damage initiate at the phase boundaries.
基金Advanced Material Research Center (AMRC) for providing the alloys,laboratory equipments and financial supports and Iran Aluminum Research Center (IARC) for laboratory equipments
文摘In the present research, the dissolution mechanism of a Zr rich structure during annealing of a Ni3Al base alloy containing Cr, Mo, Zr and B, was investigated. The annealing treatments were performed up to 50 h at 900, 1000 and 1100℃. The alloy used in this investigation was produced by vacuum-arc remelting technique. The results show that at the beginning of the process, a mixed interface reaction and local equilibrium (long range diffusion) mechanism controls the dissolution process. After a short time, this mechanism changes and the dissolution mechanism of the Zr rich structure changes to only long range diffusion of Zr element. According to this mechanism, the activation energy of this process is estimated to be about 143.3 kJ.mol-1. Also the phases that contribute to this structure and the transformations that occur at the final steps of solidification of this alloy were introduced. According to the results, at the final step of solidification, a peritectic type reaction occurs in the form of L+ y→Ni7Zr2 and →-Ni7Zr2 segregates from the melt. Following this transformation, →-Ni7Zr2 eutectic separates from the remaining Zr rich liquid. The solidification process will be terminated by a ternary eutectic reaction in the form of L→y+Ni5Zr+Ni7Zr2.
基金financial support for this work by Natural Science Foundation of Jiangsu Province,China(No.BK20160486)the National Natural Science Foundation of China(No.91860111)。
文摘The aim of this paper is to model the yielding asymmetry of pressure-insensitive metals,including but not limited to Ni3 Al alloys.The main focuses are put on the flexibility and manipulative convenience.The parameters of theory are kept to a minimum and can be determined by as few tests as possible.These requirements are fulfilled by constructing a yield function using the second and third-invariants of a linearly transformed stress tensor.The proposed yield criterion has a simple mathematical form and has only seven parameters when used in three-dimensional stresses.Compared with existing theories,the new yield criterion has much fewer parameters,which makes it very convenient for practical applications.The coefficients of the criterion are identified by an error minimization procedure.Applications to a Ni3 Al based intermetallic alloy as well as a Cu-Al-Be shape memory alloy and comparison to other criteria show that the proposed criterion has nearly the same predictive ability and flexibility with other criteria.The proposed yield criterion can estimate the coefficients by using less data,which is a big advantage compared with other similar theories,especially when there is a limited number of experimental data.