通过两步液相法合成了生长在泡沫镍上的具有多孔结构的纳米Ni3S2,分别用XRD,SEM对材料进行了物相和微观形貌表征,并利用电化学工作站测试了其电化学性能.实验结果表明,利用(NH4)2S2O8氧化泡沫镍时反应温度应在70℃以上,反应时间在3 h以...通过两步液相法合成了生长在泡沫镍上的具有多孔结构的纳米Ni3S2,分别用XRD,SEM对材料进行了物相和微观形貌表征,并利用电化学工作站测试了其电化学性能.实验结果表明,利用(NH4)2S2O8氧化泡沫镍时反应温度应在70℃以上,反应时间在3 h以上,合成的电极材料表面呈多孔薄层的三维结构,孔径大小分布广,并且薄层之间没有互相重叠的现象.循环伏安曲线及恒流充放电曲线显示,Ni3S2电极材料具有良好的可逆性,明显的电池电容特点.当电流密度增大10倍时,比电容只下降了35.5%,具有良好的倍率性能.由交流阻抗谱图可知,高频区电阻率为0.91Ω,低频区直线斜率大,表明材料具有良好的导电性.当电极材料充放电次数从0增加到1 000次时,比电容由1 015.4 F g^-1增加到1 222.7 F g^-1,增加了20.4%,表明制备的Ni3S2具有良好的循环稳定性.展开更多
采用一步固相煅烧工艺制备了碳纳米管原位封装Ni3S2纳米颗粒(Ni3S2@CNT),并研究了其作为钠离子电池(SIBs)负极材料的电化学性能.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、循环伏安测试、恒流充放电以及交流阻抗...采用一步固相煅烧工艺制备了碳纳米管原位封装Ni3S2纳米颗粒(Ni3S2@CNT),并研究了其作为钠离子电池(SIBs)负极材料的电化学性能.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、循环伏安测试、恒流充放电以及交流阻抗等研究了Ni3S2@CNT的物相结构、形貌特征以及电化学性能.电化学测试表明,材料在100 mA·g^(-1)电流密度下,放电容量可以达到541.6 m Ah·g^(-1),甚至在2000 mA·g^(-1)的大电流密度下其放电比容量也可以维持在274.5 m Ah·g^(-1).另外,材料在100 mA·g^(-1)电流密度下,经过120周充放电循环后其放电和充电比容量仍然可以保持在374.5 m Ah·g^(-1)和359.3 m Ah·g^(-1),说明其具有良好倍率性能和循环稳定性能.良好的电化学性能归因于这种独特的碳纳米管原位封装Ni3S2纳米颗粒结构.碳纳米管不但可以提高复合材料的导电性,也可以缓冲Ni3S2纳米颗粒在反复充放电过程中产生的体积膨胀效应,明显改善了Ni3S2@CNT负极复合材料的电化学性能.展开更多
以NH4SCN为硫源,在水溶液中电沉积制备Ni3S2/Ni复合材料.利用EDS、SEM、XRD分别对该复合材料进行组分、形貌、晶体结构的表征与分析,并将所制备的复合材料与Li片组成电池,研究其电化学性能.结果表明NH4SCN的浓度对复合材料的形貌及电性...以NH4SCN为硫源,在水溶液中电沉积制备Ni3S2/Ni复合材料.利用EDS、SEM、XRD分别对该复合材料进行组分、形貌、晶体结构的表征与分析,并将所制备的复合材料与Li片组成电池,研究其电化学性能.结果表明NH4SCN的浓度对复合材料的形貌及电性能有显著的影响.如在NH4SCN浓度为0.1 mol/L时,该复合物由亚微米颗粒组成,此时的电化学性能最好,首次放电比容量达到240.4 m Ah/g,容量保持率为89.35%.展开更多
A binder-free Ni3S2 electrode was prepared directly on a graphene-coated Ni foam (G/Ni) substrate through surface sulfiding of substrate using thiourea as the sulfur source in this work. The Ni3S2 showed a flower-li...A binder-free Ni3S2 electrode was prepared directly on a graphene-coated Ni foam (G/Ni) substrate through surface sulfiding of substrate using thiourea as the sulfur source in this work. The Ni3S2 showed a flower-like morphology and was uniformly distributed on the G/Ni surface. The flower-like Ni3S2 was composed of cross-arrayed nanoflakes with a diameter and a thickness of 1-2 μm and -50 nm, re- spectively. The free space in the flowers and the thin feature of Ni3S2 buffered the volume changes and relieved mechanical strain during re- peated cycling. The intimate contact with the Ni substrate and the fixing effect of graphene maintained the structural stability of the Ni3S2 electrode during cycling. The G/Ni-supported Ni3S2 maintained a reversible capacity of 250 mAh·g^-1 after 100 cycles at 50 mA·g^-1, demon- strating the good cycling stability as a result of the unique microstructure of this electrode material.展开更多
The growing global demands of safe, low-cost and high working voltage energy storage devices trigger strong interests in novel battery concepts beyond state-of-art lithium-ion battery. Herein, a dualion battery based ...The growing global demands of safe, low-cost and high working voltage energy storage devices trigger strong interests in novel battery concepts beyond state-of-art lithium-ion battery. Herein, a dualion battery based on nanostructured Ni_3S_2/Ni foam@RGO(NSNR) composite anode is developed, utilizing graphite as cathode material and LiPF6-VC-based solvent as electrolyte. The battery operates at high working voltage of 4.2–4.5 V, with superior discharge capacity of ~90 m A h g^(-1) at 100 mA g^(-1), outstanding rate performance, and long-term cycling stability over 500 cycles with discharge capacity retention of ~85.6%. Moreover, the composite simultaneously acts as the anode material and the current collector, and the corrosion phenomenon can be greatly reduced compared to metallic Al anode. Thus, this work represents a significant step forward for practical safe, low-cost and high working voltage dual-ion batteries,showing attractive potential for future energy storage application.展开更多
The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts...The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts with twin nanocrystal Zn0.5Cd0.5S(ZCS)solid solution homojunctions for an efficient visible-light-driven H2 production by a simple approach.As-synthesized Zn0.5Cd0.5S-1%Ni3C(ZCS-1)heterojunction/homojunction nanohybrid exhibited the highest photocatalytic H2-evolution rate of 783μmol h‒1 under visible light,which is 2.88 times higher than that of pristine twin nanocrystal ZCS solid solution.The apparent quantum efficiencies of ZCS and ZCS-1 are measured to be 6.13%and 19.25%at 420 nm,respectively.Specifically,the homojunctions between the zinc blende and wurtzite segments in twin nanocrystal ZCS solid solution can significantly improve the light absorption and separation of photogenerated electron-hole pairs.Furthermore,the heterojunction between ZCS and metallic Ni3C NP cocatalysts can efficiently trap excited electrons from ZCS solid solution and enhance the H2-evolution kinetics at the surface for improving catalytic activity.This study demonstrates a unique one-step strategy for constructing heterojunction/homojunction hybrid nanostructures for a more efficient photocatalytic H2 evolution compared to other noble metal photocatalytic systems.展开更多
Transition metal compounds are attractive for their significant applications in supercapacitors and as non-noble metal catalysts for electrochemical water splitting.Herein,we develop Ni3 S2 nanorods growing directly o...Transition metal compounds are attractive for their significant applications in supercapacitors and as non-noble metal catalysts for electrochemical water splitting.Herein,we develop Ni3 S2 nanorods growing directly on Ni foam,which act as multifunctional additive-free Ni3 S2@Ni electrode for supercapacitor and overall water splitting.Based on PVA-KOH gel electrolyte,the assembled all-solid-state Ni3 S2@Ni//AC asymmetric supercapacitor delivers a high areal energy density of 0.52 mWh cm^-2 at an areal power density of 9.02 MW cm^-2,and exhibits an excellent cycling stability with a capacitance retention ratio of 89%after 10000 GCD cycles at a current density of 30 mA cm^-2.For hydrogen evolution reaction and oxygen evolution reaction in 1 M KOH,Ni3 S2@Ni electrode achieves a benchmark of 10 mA cm^-2at overpotentials of 82 mV and 310 mV,respectively.Furthermore,the assembled Ni3 S2@Ni‖Ni3 S2@Ni electrolyzer for overall water splitting attains a current density of 10 mA cm^-2 at 1.61 V.The in-situ synthesis of Ni3 S2@Ni electrode enriches the applications of additive-free transition metal compounds in high-performance energy storage devices and efficient electrocatalysis.展开更多
In the original publication,Figure S4 is an ancillary image to compare the specific surface areas of TiO2/Ni3S2 and Ni3S2 samples and it was incorrectly published.To better serve our readers,the correct figure is prov...In the original publication,Figure S4 is an ancillary image to compare the specific surface areas of TiO2/Ni3S2 and Ni3S2 samples and it was incorrectly published.To better serve our readers,the correct figure is provided in this correction.The BET values are correct and unaffected.The corresponding figure caption,data analysis and conclusions are not affected and thus not to be changed.The authors would like to apologize for any inconvenience caused.展开更多
(PPh_3)_2Ni(i-mnt),(i-mnt=S_2C=C(CN)_2),Mr=613.43,monoclinic,Pn,a=9.167(3),b=10.872(3), c=18.209(7) ,β=101.46(3)°,V=1779(1) ,Z=2,Dc=1.15 g/cm^3,λ(Moka)=0.71069 ,μ=7.67 cm^(-1), F(000)=648,T=296K,final R=0.060,...(PPh_3)_2Ni(i-mnt),(i-mnt=S_2C=C(CN)_2),Mr=613.43,monoclinic,Pn,a=9.167(3),b=10.872(3), c=18.209(7) ,β=101.46(3)°,V=1779(1) ,Z=2,Dc=1.15 g/cm^3,λ(Moka)=0.71069 ,μ=7.67 cm^(-1), F(000)=648,T=296K,final R=0.060,Rw=0.073 for 1909 observed reflections with Ⅰ≥3σ(Ⅰ).The complex adopts a square planar geometry as its coordination unit,the mean Ni-S and Ni-P distances are 2.216 and 2.221 ,respectivety.展开更多
文摘通过两步液相法合成了生长在泡沫镍上的具有多孔结构的纳米Ni3S2,分别用XRD,SEM对材料进行了物相和微观形貌表征,并利用电化学工作站测试了其电化学性能.实验结果表明,利用(NH4)2S2O8氧化泡沫镍时反应温度应在70℃以上,反应时间在3 h以上,合成的电极材料表面呈多孔薄层的三维结构,孔径大小分布广,并且薄层之间没有互相重叠的现象.循环伏安曲线及恒流充放电曲线显示,Ni3S2电极材料具有良好的可逆性,明显的电池电容特点.当电流密度增大10倍时,比电容只下降了35.5%,具有良好的倍率性能.由交流阻抗谱图可知,高频区电阻率为0.91Ω,低频区直线斜率大,表明材料具有良好的导电性.当电极材料充放电次数从0增加到1 000次时,比电容由1 015.4 F g^-1增加到1 222.7 F g^-1,增加了20.4%,表明制备的Ni3S2具有良好的循环稳定性.
文摘采用一步固相煅烧工艺制备了碳纳米管原位封装Ni3S2纳米颗粒(Ni3S2@CNT),并研究了其作为钠离子电池(SIBs)负极材料的电化学性能.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、循环伏安测试、恒流充放电以及交流阻抗等研究了Ni3S2@CNT的物相结构、形貌特征以及电化学性能.电化学测试表明,材料在100 mA·g^(-1)电流密度下,放电容量可以达到541.6 m Ah·g^(-1),甚至在2000 mA·g^(-1)的大电流密度下其放电比容量也可以维持在274.5 m Ah·g^(-1).另外,材料在100 mA·g^(-1)电流密度下,经过120周充放电循环后其放电和充电比容量仍然可以保持在374.5 m Ah·g^(-1)和359.3 m Ah·g^(-1),说明其具有良好倍率性能和循环稳定性能.良好的电化学性能归因于这种独特的碳纳米管原位封装Ni3S2纳米颗粒结构.碳纳米管不但可以提高复合材料的导电性,也可以缓冲Ni3S2纳米颗粒在反复充放电过程中产生的体积膨胀效应,明显改善了Ni3S2@CNT负极复合材料的电化学性能.
文摘以NH4SCN为硫源,在水溶液中电沉积制备Ni3S2/Ni复合材料.利用EDS、SEM、XRD分别对该复合材料进行组分、形貌、晶体结构的表征与分析,并将所制备的复合材料与Li片组成电池,研究其电化学性能.结果表明NH4SCN的浓度对复合材料的形貌及电性能有显著的影响.如在NH4SCN浓度为0.1 mol/L时,该复合物由亚微米颗粒组成,此时的电化学性能最好,首次放电比容量达到240.4 m Ah/g,容量保持率为89.35%.
基金financially supported by the Scientific and Technological Project of State Grid Corporation of China
文摘A binder-free Ni3S2 electrode was prepared directly on a graphene-coated Ni foam (G/Ni) substrate through surface sulfiding of substrate using thiourea as the sulfur source in this work. The Ni3S2 showed a flower-like morphology and was uniformly distributed on the G/Ni surface. The flower-like Ni3S2 was composed of cross-arrayed nanoflakes with a diameter and a thickness of 1-2 μm and -50 nm, re- spectively. The free space in the flowers and the thin feature of Ni3S2 buffered the volume changes and relieved mechanical strain during re- peated cycling. The intimate contact with the Ni substrate and the fixing effect of graphene maintained the structural stability of the Ni3S2 electrode during cycling. The G/Ni-supported Ni3S2 maintained a reversible capacity of 250 mAh·g^-1 after 100 cycles at 50 mA·g^-1, demon- strating the good cycling stability as a result of the unique microstructure of this electrode material.
基金supported by the National Natural Science Foundation of China (No. 51725401)the Fundamental Research Funds for the Central Universities (FRF-TP-15-002C1 and FRF-TP17-002C2)
文摘The growing global demands of safe, low-cost and high working voltage energy storage devices trigger strong interests in novel battery concepts beyond state-of-art lithium-ion battery. Herein, a dualion battery based on nanostructured Ni_3S_2/Ni foam@RGO(NSNR) composite anode is developed, utilizing graphite as cathode material and LiPF6-VC-based solvent as electrolyte. The battery operates at high working voltage of 4.2–4.5 V, with superior discharge capacity of ~90 m A h g^(-1) at 100 mA g^(-1), outstanding rate performance, and long-term cycling stability over 500 cycles with discharge capacity retention of ~85.6%. Moreover, the composite simultaneously acts as the anode material and the current collector, and the corrosion phenomenon can be greatly reduced compared to metallic Al anode. Thus, this work represents a significant step forward for practical safe, low-cost and high working voltage dual-ion batteries,showing attractive potential for future energy storage application.
文摘The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts with twin nanocrystal Zn0.5Cd0.5S(ZCS)solid solution homojunctions for an efficient visible-light-driven H2 production by a simple approach.As-synthesized Zn0.5Cd0.5S-1%Ni3C(ZCS-1)heterojunction/homojunction nanohybrid exhibited the highest photocatalytic H2-evolution rate of 783μmol h‒1 under visible light,which is 2.88 times higher than that of pristine twin nanocrystal ZCS solid solution.The apparent quantum efficiencies of ZCS and ZCS-1 are measured to be 6.13%and 19.25%at 420 nm,respectively.Specifically,the homojunctions between the zinc blende and wurtzite segments in twin nanocrystal ZCS solid solution can significantly improve the light absorption and separation of photogenerated electron-hole pairs.Furthermore,the heterojunction between ZCS and metallic Ni3C NP cocatalysts can efficiently trap excited electrons from ZCS solid solution and enhance the H2-evolution kinetics at the surface for improving catalytic activity.This study demonstrates a unique one-step strategy for constructing heterojunction/homojunction hybrid nanostructures for a more efficient photocatalytic H2 evolution compared to other noble metal photocatalytic systems.
基金supported by the National Natural Science Foundation of China[grant no.51701022]。
文摘Transition metal compounds are attractive for their significant applications in supercapacitors and as non-noble metal catalysts for electrochemical water splitting.Herein,we develop Ni3 S2 nanorods growing directly on Ni foam,which act as multifunctional additive-free Ni3 S2@Ni electrode for supercapacitor and overall water splitting.Based on PVA-KOH gel electrolyte,the assembled all-solid-state Ni3 S2@Ni//AC asymmetric supercapacitor delivers a high areal energy density of 0.52 mWh cm^-2 at an areal power density of 9.02 MW cm^-2,and exhibits an excellent cycling stability with a capacitance retention ratio of 89%after 10000 GCD cycles at a current density of 30 mA cm^-2.For hydrogen evolution reaction and oxygen evolution reaction in 1 M KOH,Ni3 S2@Ni electrode achieves a benchmark of 10 mA cm^-2at overpotentials of 82 mV and 310 mV,respectively.Furthermore,the assembled Ni3 S2@Ni‖Ni3 S2@Ni electrolyzer for overall water splitting attains a current density of 10 mA cm^-2 at 1.61 V.The in-situ synthesis of Ni3 S2@Ni electrode enriches the applications of additive-free transition metal compounds in high-performance energy storage devices and efficient electrocatalysis.
文摘In the original publication,Figure S4 is an ancillary image to compare the specific surface areas of TiO2/Ni3S2 and Ni3S2 samples and it was incorrectly published.To better serve our readers,the correct figure is provided in this correction.The BET values are correct and unaffected.The corresponding figure caption,data analysis and conclusions are not affected and thus not to be changed.The authors would like to apologize for any inconvenience caused.
文摘(PPh_3)_2Ni(i-mnt),(i-mnt=S_2C=C(CN)_2),Mr=613.43,monoclinic,Pn,a=9.167(3),b=10.872(3), c=18.209(7) ,β=101.46(3)°,V=1779(1) ,Z=2,Dc=1.15 g/cm^3,λ(Moka)=0.71069 ,μ=7.67 cm^(-1), F(000)=648,T=296K,final R=0.060,Rw=0.073 for 1909 observed reflections with Ⅰ≥3σ(Ⅰ).The complex adopts a square planar geometry as its coordination unit,the mean Ni-S and Ni-P distances are 2.216 and 2.221 ,respectivety.