The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically inves...The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically investigated. The high temperature friction and wear behavior of the cladding coating and substrate sliding against GCr15 ball under different loads was systematically evaluated. It was found that the coating has homogenous and fine microstructure consisting of γ(Ni) solid solution, a considerable amount of network Ni-Ni3 B eutectics, m^23C6 with the floret-shape structure and Cr B with the dark spot-shape structure uniformly distributing in interdendritic eutectics. The microhardness of the coating is about 2.6 times as much as that of the substrate. The coating produces higher friction values than the substrate under the same load condition, but the friction process on the coating keeps relatively stable. Wear rates of the coating are about 1/6.2 of that of the substrate under the higher load(300 g). Wear mechanism of the substrate includes adhesion wear, abrasive wear, severe plastic deformation and oxidation wear, while that of the coating is merely a combination of mild abrasive wear and moderate oxidation wear.展开更多
The composition of magnesium alloys is greatly associated with initial deposition behavior of electroless Ni-P coatings.Thus,the initial deposition behavior of electroless Ni–P coatings on ZK60 and ME20 alloys was in...The composition of magnesium alloys is greatly associated with initial deposition behavior of electroless Ni-P coatings.Thus,the initial deposition behavior of electroless Ni–P coatings on ZK60 and ME20 alloys was investigated.The results indicated that differences in the alloy compositions significantly influenced the initial deposition process and the adhesive strength,corrosion resistance,and crystal structure.The initial deposition of coatings on ZK60 and ME20 alloys preferentially occurred on the precipitates.The precipitates in ZK60 alloy had higher chemical activity after HF activation and controlled the initial deposition rate of the coating.The initial deposition rate of the coating on ME20 alloy mainly depended on the density of the Mg F2 film formed by HF activation rather than on the precipitates.Owing to differences in the initial deposition process,the coating on ZK60 alloy had higher adhesive strength and better corrosion resistance than that on ME20 alloy.The coatings on ZK60 and ME20 alloys mainly had crystalline structures,and the coating on ME20 alloy had also a slight microcrystalline structure.展开更多
The Multi layer coating of Ni60 alloy was got by multi layer laser cladding. The height of the coating was about 12mm and the wall of the coating was perpendicular to the base. The microstructure of the coating was ...The Multi layer coating of Ni60 alloy was got by multi layer laser cladding. The height of the coating was about 12mm and the wall of the coating was perpendicular to the base. The microstructure of the coating was made up of fine dendrite. The conjunction between layers was good.展开更多
Using a special constant deflection device, the changes in dislocation configuration ahead of a loaded crack tip for 60Fe40Ni alloy. before and after magnetization in a magnetic field, have been studied in TEM. The re...Using a special constant deflection device, the changes in dislocation configuration ahead of a loaded crack tip for 60Fe40Ni alloy. before and after magnetization in a magnetic field, have been studied in TEM. The results showed that the magnetization for 60Fe40Ni alloy could enhance dislocation emission, multiplication and motion. Also, the mechanical properties of 60Fe40Ni alloy, in air and in the magnetic field respectively have been investigated using the slow strain rate tension. And the results indicated that magnetization could make the yield strength corresponding to decrease by 26 percent, but did not influence the ultimate tensile strength and the fracture strain, which showed that magnetization could enhance plastic deformation.展开更多
基金Project(2012AA040210)supported by the National High-Tech Research and Development Program of ChinaProject(510-C10293)supported by the Central Finance Special Fund to Support the Local University,ChinaProject(2010A090200048)supported by the Key Project of Industry,Education,Research of Guangdong Province and Ministry of Education,China
文摘The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically investigated. The high temperature friction and wear behavior of the cladding coating and substrate sliding against GCr15 ball under different loads was systematically evaluated. It was found that the coating has homogenous and fine microstructure consisting of γ(Ni) solid solution, a considerable amount of network Ni-Ni3 B eutectics, m^23C6 with the floret-shape structure and Cr B with the dark spot-shape structure uniformly distributing in interdendritic eutectics. The microhardness of the coating is about 2.6 times as much as that of the substrate. The coating produces higher friction values than the substrate under the same load condition, but the friction process on the coating keeps relatively stable. Wear rates of the coating are about 1/6.2 of that of the substrate under the higher load(300 g). Wear mechanism of the substrate includes adhesion wear, abrasive wear, severe plastic deformation and oxidation wear, while that of the coating is merely a combination of mild abrasive wear and moderate oxidation wear.
文摘The composition of magnesium alloys is greatly associated with initial deposition behavior of electroless Ni-P coatings.Thus,the initial deposition behavior of electroless Ni–P coatings on ZK60 and ME20 alloys was investigated.The results indicated that differences in the alloy compositions significantly influenced the initial deposition process and the adhesive strength,corrosion resistance,and crystal structure.The initial deposition of coatings on ZK60 and ME20 alloys preferentially occurred on the precipitates.The precipitates in ZK60 alloy had higher chemical activity after HF activation and controlled the initial deposition rate of the coating.The initial deposition rate of the coating on ME20 alloy mainly depended on the density of the Mg F2 film formed by HF activation rather than on the precipitates.Owing to differences in the initial deposition process,the coating on ZK60 alloy had higher adhesive strength and better corrosion resistance than that on ME20 alloy.The coatings on ZK60 and ME20 alloys mainly had crystalline structures,and the coating on ME20 alloy had also a slight microcrystalline structure.
文摘The Multi layer coating of Ni60 alloy was got by multi layer laser cladding. The height of the coating was about 12mm and the wall of the coating was perpendicular to the base. The microstructure of the coating was made up of fine dendrite. The conjunction between layers was good.
基金supported by the National Natural Science Foundation of China(No.19891180)
文摘Using a special constant deflection device, the changes in dislocation configuration ahead of a loaded crack tip for 60Fe40Ni alloy. before and after magnetization in a magnetic field, have been studied in TEM. The results showed that the magnetization for 60Fe40Ni alloy could enhance dislocation emission, multiplication and motion. Also, the mechanical properties of 60Fe40Ni alloy, in air and in the magnetic field respectively have been investigated using the slow strain rate tension. And the results indicated that magnetization could make the yield strength corresponding to decrease by 26 percent, but did not influence the ultimate tensile strength and the fracture strain, which showed that magnetization could enhance plastic deformation.