Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as ...Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.展开更多
In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungst...In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungsten carbide (WC) ceramic powder used as coating material to obtain different Nickel-based WC alloys coating. Micro-structure and micro-hardness analysis of the coating layer are conducted, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70%Ni60, 30%WC powder has the best properties with plasma spray welding, in which the micro-hardness can achieve 900HV, meanwhile it can improve the thermal property of hot-forging die dramatically.展开更多
采用火焰喷焊法在低碳钢试样表面制备了N i 60喷焊层,与水力机械材料ZG06Cr13N i5Mo的抗气蚀性能进行对比。借助光学显微镜、X射线衍射仪、显微硬度计、磁致伸缩气蚀仪等设备对涂层的组织、结构和性能进行了研究,利用扫描电镜对气蚀形...采用火焰喷焊法在低碳钢试样表面制备了N i 60喷焊层,与水力机械材料ZG06Cr13N i5Mo的抗气蚀性能进行对比。借助光学显微镜、X射线衍射仪、显微硬度计、磁致伸缩气蚀仪等设备对涂层的组织、结构和性能进行了研究,利用扫描电镜对气蚀形貌进行了观察。结果表明:N i 60喷焊层组织较细,显微硬度远高于ZG06Cr13N i5Mo;其抗气蚀性能和ZG06Cr13N i5Mo相比有所提高。展开更多
To meet the performance requirements of hot forging die heat resistant layer, the Ni60-SiC coating, Ni60-Cr3C2 coating, and Ni60-WC coating were prepared using W6Mo5Cr4V2 as substrate material with 30%SiC, 10%Cr3C2, 3...To meet the performance requirements of hot forging die heat resistant layer, the Ni60-SiC coating, Ni60-Cr3C2 coating, and Ni60-WC coating were prepared using W6Mo5Cr4V2 as substrate material with 30%SiC, 10%Cr3C2, 30%WC powder by means of plasma spraying and plasma spray re-melting and plasma spray welding, respectively. Microstructure of each carbide coating was analyzed, micro-hardness was tested, and mainly thermal parameters of coating were detected. The experimental results show that using plasma spray welding, the performance of 70%Ni60/30%SiC powder is the best, and its micro-hardness can achieved 1100HV, showing good thermal-physical property.展开更多
基金sponsored by the Centre for Industrial Photonics, Institute for Manufacture, Department of Engineering, University of Cambridgethe Natural Science Foundation of China (51271170)+1 种基金China International Science and Technology Cooperation Project (2011DFR50540)Major Scientific and Technological Special Key Industrial Project of Zhejiang Province (2012C11001)
文摘Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.
基金Funded by the National Natural Science Foundation of China(No.50675165)the National Key Technology R&D Program(No.2006BAF02A29)
文摘In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungsten carbide (WC) ceramic powder used as coating material to obtain different Nickel-based WC alloys coating. Micro-structure and micro-hardness analysis of the coating layer are conducted, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70%Ni60, 30%WC powder has the best properties with plasma spray welding, in which the micro-hardness can achieve 900HV, meanwhile it can improve the thermal property of hot-forging die dramatically.
文摘采用火焰喷焊法在低碳钢试样表面制备了N i 60喷焊层,与水力机械材料ZG06Cr13N i5Mo的抗气蚀性能进行对比。借助光学显微镜、X射线衍射仪、显微硬度计、磁致伸缩气蚀仪等设备对涂层的组织、结构和性能进行了研究,利用扫描电镜对气蚀形貌进行了观察。结果表明:N i 60喷焊层组织较细,显微硬度远高于ZG06Cr13N i5Mo;其抗气蚀性能和ZG06Cr13N i5Mo相比有所提高。
文摘To meet the performance requirements of hot forging die heat resistant layer, the Ni60-SiC coating, Ni60-Cr3C2 coating, and Ni60-WC coating were prepared using W6Mo5Cr4V2 as substrate material with 30%SiC, 10%Cr3C2, 30%WC powder by means of plasma spraying and plasma spray re-melting and plasma spray welding, respectively. Microstructure of each carbide coating was analyzed, micro-hardness was tested, and mainly thermal parameters of coating were detected. The experimental results show that using plasma spray welding, the performance of 70%Ni60/30%SiC powder is the best, and its micro-hardness can achieved 1100HV, showing good thermal-physical property.