The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array ...The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array of the Taguchi method.A proposed numerical model for predicting the correlation of mechanical properties was supplemented with experimental data.The quenching process was conducted using a cooling medium called “nanofluids”.Nanoparticles were dissolved in a liquid phase at various concentrations(0.5%,1%,2.5%,and 5% vf) to prepare the nanofluids.Experimental investigations were done to assess the impact of temperature,base fluid,volume fraction,and soaking time on the mechanical properties.The outcomes showed that all conditions led to a noticeable improvement in the alloy's hardness which reached 100%,the grain size was refined about 80%,and unwanted residual stresses were removed from 50 to 150 MPa.Adding 5% of CuO nanoparticles to oil led to the best grain size refinement,while adding 2.5% of Al_(2)O_(3) nanoparticles to engine oil resulted in the greatest compressive residual stress.The experimental variables were used as the input data for the established numerical ANN model,and the mechanical properties were the output.Upwards of 99% of the training network's correlations seemed to be positive.The estimated result,nevertheless,matched the experimental dataset exactly.Thus,the ANN model is an effective tool for reflecting the effects of quenching conditions on the mechanical properties of AISI 1035.展开更多
In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties ...In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R).展开更多
The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid...The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid-solution time,artificial aging temperature and artificial aging time.An artificial neural network(ANN) model with a back-propagation(BP) algorithm was used to predict mechanical properties of A357 alloy,and the effects of heat treatment processes on mechanical behavior of this alloy were studied.The results show that this BP model is able to predict the mechanical properties with a high accuracy.This model was used to reflect the influence of heat treatments on the mechanical properties of A357 alloy.Isograms of ultimate tensile strength and elongation were drawn in the same picture,which are very helpful to understand the relationship among aging parameters,ultimate tensile strength and elongation.展开更多
Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was esta...Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was established.In the network model,the input parameters of the model are strain,logarithm strain rate and temperature while flow stress is the output parameter.Multilayer perceptron(MLP) architecture with back-propagation algorithm is utilized.The present study achieves a good performance of the artificial neural network(ANN) model,and the predicted results are in agreement with experimental values.A processing map of Ti40 alloy is obtained with the flow stress predicted by the trained neural network model.The processing map developed by ANN model can efficiently track dynamic recrystallization and flow localization regions of Ti40 alloy during deforming.Subsequently,the safe and instable domains of hot working of Ti40 alloy are identified and validated through microstructural investigations.展开更多
The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron ...The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile test. A radial basis function artificial neural network (RBF-ANN) model was developed for the analysis and prediction of the electrical resistivity of the tested alloy during the solid solution process. The results show that the model is capable of predicting the electrical resistivity with remarkable success. The correlation coefficient between the predicted results and experimental data is 0.9958 and the relative error is 0.33%. The predicted data were adopted to construct a novel physical picture which was defined as “solution resistivity map”. As revealed by the map, the optimum domain for the solid solution of the tested alloy is in the temperature range of 465?475 °C and solution time range of 50?60 min. In this domain, the solution of second particles and the recrystallization phenomenon will reach equilibrium.展开更多
An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass forming alloys. A group of Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were designed based on...An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass forming alloys. A group of Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were designed based on the dc and their de values were predicted by the ANN model. Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were prepared by injecting into copper mold. The amorphous structures and the determination of the dc of as-cast alloys were ascertained using X-ray diffraction. The results show that the predicted de values of glass forming alloys are in agreement with the corresponding experimental values. Thus the developed ANN model is reliable and adequate for designing the composition and predicting the de of glass forming alloy.展开更多
A developmental research has been carried out to deal with the high performance of Cu-Cr-Zr-Mg lead frame alloy by artificial neural network (ANN). Using the cold working to assist in the aging hardening can improve t...A developmental research has been carried out to deal with the high performance of Cu-Cr-Zr-Mg lead frame alloy by artificial neural network (ANN). Using the cold working to assist in the aging hardening can improve the the hardness and electrical conductivity properties of Cu-Cr-Zr-Mg lead frame alloy. This paper studies the effect of different extent of cold working on the aging properties by a supervised ANN to model the non-linear relationship between processing parameters and the properties. The back-propagation (BP) training algorithm is improved by Levenberg-Marquardt algorithm. A basic repository on the domain knowledge of cold worked aging processes is established via sufficient data mining by the network. The predicted values of the ANN coincide well with the tested data. So an important foundation has been laid for prediction and optimum controlling the rolling and aging properties of Cu-Cr-Zr-Mg alloy.展开更多
A supervised artificial neural network (ANN) to model the nonlinear relationship between parameters of thermomechanical treatment processes with respect to hardness and conductivity properties was proposed for Cu-Cr-Z...A supervised artificial neural network (ANN) to model the nonlinear relationship between parameters of thermomechanical treatment processes with respect to hardness and conductivity properties was proposed for Cu-Cr-Zr alloy. The improved model was developed by the Levenberg-Marquardt training algorithm. A basic repository on the domain knowledge of thermomechanical treatment processes is established via sufficient data acquisition by the network. The results showed that the ANN system is an effective way and can be successfully used to predict and analyze the properties of Cu-Cr-Zr alloy.展开更多
The non-linear relationship between parameters of rapidly solidified agingprocesses and mechancal and electrical properties of Cu-Cr-Zr alloy is available by using asupervised artificial neural network (ANN). A knowle...The non-linear relationship between parameters of rapidly solidified agingprocesses and mechancal and electrical properties of Cu-Cr-Zr alloy is available by using asupervised artificial neural network (ANN). A knowledge repository of rapidly solidified agingprocesses is established via sufficient data learning by the network. The predicted values of theneural network are in accordance with the tested data. So an effective measure for foreseeing andcontrolling the properties of the processing is provided.展开更多
Hot compression experiments were conducted on Ti 15 3 alloy specimens using Gleeble 1500 Thermal Simulator.These tests were focused to obtain the flow stress data under various conditions of strain,strain rate and tem...Hot compression experiments were conducted on Ti 15 3 alloy specimens using Gleeble 1500 Thermal Simulator.These tests were focused to obtain the flow stress data under various conditions of strain,strain rate and temperature. On the basis of these data, the predicting model for the nonlinear relation between flow stress and deformation strain,strain rate and temperature for Ti 15 3 alloy was developed with a back propagation artificial neural network method. Results show that the neural network can reproduce the flow stress in the sampled data and predict the nonsampled data well. Thus the neural network method has been verified to be used to tackle hot deformation problems of Ti 15 3 alloy. [展开更多
The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over 360~480 ℃ with strain rates in the range of 0.01~1 s-...The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over 360~480 ℃ with strain rates in the range of 0.01~1 s-1 and the largest deformation up to 60%. On the basis of experiments, a BP artificial neural network (ANN) model was constructed to predict 2A70 aluminum alloy flow stress. True strain, strain rates and temperatures were input to the network, and flow stress was the only output. The comparison between predicted values and experimental data showed that the relative error for the trained model was less than ±3% for the sampled data while it was less than ±6% for the non-sampled data. Furthermore, the neural network model gives better results than nonlinear regression method. It is evident that the model constructed by BP ANN can be used to accurately predict the 2A70 alloy flow stress.展开更多
In order to predict and control the properties of Cu-Cr-Sn-Zn alloy,a model of aging processes via an artificial neural network(ANN) method to map the non-linear relationship between parameters of aging process and th...In order to predict and control the properties of Cu-Cr-Sn-Zn alloy,a model of aging processes via an artificial neural network(ANN) method to map the non-linear relationship between parameters of aging process and the hardness and electrical conductivity properties of the Cu-Cr-Sn-Zn alloy was set up.The results show that the ANN model is a very useful and accurate tool for the property analysis and prediction of aging Cu-Cr-Sn-Zn alloy.Aged at 470-510 ℃ for 4-1 h,the optimal combinations of hardness 110-117(HV) and electrical conductivity 40.6-37.7 S/m are available respectively.展开更多
The aging hardening process makes it possible to get higher hardness and electrical conductivity of lead frame copper alloy. The process has only been studied empirically by trial-and-error method so far. The use of a...The aging hardening process makes it possible to get higher hardness and electrical conductivity of lead frame copper alloy. The process has only been studied empirically by trial-and-error method so far. The use of a supervised artificial neural network(ANN) was proposed to model the non-linear relationship between parameters of aging process with respect to hardness and conductivity properties of Cu-Cr-Zr alloy. The improved model was developed by the Levenberg-Marquardt training algorithm. A basic repository on the domain knowledge of aging process was established via sufficient data mining by the network. The results show that the ANN system is effective and successful for predicting and analyzing the properties of Cu-Cr-Zr alloy.展开更多
A novel data mining approach,based on artificial neural network(ANN) using differential evolution(DE) training algorithm,was proposed to model the non-linear relationship between parameters of aging processes and mech...A novel data mining approach,based on artificial neural network(ANN) using differential evolution(DE) training algorithm,was proposed to model the non-linear relationship between parameters of aging processes and mechanical and electrical properties of Cu-15Ni-8Sn-0.4Si alloy.In order to improve predictive accuracy of ANN model,the leave-one-out-cross-validation (LOOCV) technique was adopted to automatically determine the optimal number of neurons of the hidden layer.The forecasting performance of the proposed global optimization algorithm was compared with that of local optimization algorithm.The present calculated results are consistent with the experimental values,which suggests that the proposed evolutionary artificial neural network algorithm is feasible and efficient.Moreover,the experimental results illustrate that the DE training algorithm combined with gradient-based training algorithm achieves better convergence performance and the lowest forecasting errors and is therefore considered to be a promising alternative method to forecast the hardness and electrical conductivity of Cu-15Ni-8Sn-0.4Si alloy.展开更多
A model is developed for predicting the correlation between processing parameters and the technical target of double glow by applying artificial neural network (ANN). The input parameters of the neural network (NN) ar...A model is developed for predicting the correlation between processing parameters and the technical target of double glow by applying artificial neural network (ANN). The input parameters of the neural network (NN) are source voltage, workplace voltage, working pressure and distance between source electrode and workpiece. The output of the NN model is three important technical targets, namely the gross element content, the thickness of surface alloying layer and the absorption rate (the ratio of the mass loss of source materials to the increasing mass of workpiece) in the processing of double glow plasma surface alloying. The processing parameters and technical target are then used as a training set for an artificial neural network. The model is based on multiplayer feedforward neural network. A very good performance of the neural network is achieved and the calculated results are in good agreement with the experimental ones.展开更多
The hat deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over a wide range of temperatures 360-480℃ with strain rates...The hat deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over a wide range of temperatures 360-480℃ with strain rates of 0.01-1s^-1 and the largest deformation of 60%, and the true stress of the material was obtained under the above-mentioned conditions. The experimental results shows that 2A70 aluminum alloy is a kind of aluminum alloy with the property of dynamic recovery; its flow stress declines with the increase of temperature, while its flow stress increases with the increase of strain rates. On the basis of experiments, the constitutive relationship of the 2A70 aluminum alloy was constructed using a BP artificial neural network. Comparison of the predicted values with the experimental data shows that the relative error of the trained model is less than ±3% for the sampled data while it is less than ±6% for the nonsampled data. It is evident that the model constructed by BP ANN can accurately predict the flow stress of the 2A70 alloy.展开更多
Neural network models of mechanical properties prediction for wrought magnesium alloys were improved by using more reasonable parameters, and were used to develop new types of magnesium alloys. The parameters were con...Neural network models of mechanical properties prediction for wrought magnesium alloys were improved by using more reasonable parameters, and were used to develop new types of magnesium alloys. The parameters were confirmed by comparing prediction errors and correlation coefficients of models, which have been built with all the parameters used commonly with training of all permutations and combinations. The application was focused on Mg-Zn-Mn and Mg-Zn-Y-Zr alloys. The prediction of mechanical properties of Mg-Zn-Mn alloys and the effects of mole ratios of Y to Zn on the strengths in Mg-Zn-Y-Zr alloys were investigated by using the improved models. The predicted results are good agreement with the experimental values. A high strength extruded Mg-Zn-Zr-Y alloy was also developed by the models. The applications of the models indicate that the improved models can be used to develop new types of wrought magnesium alloys.展开更多
The application of friction stir welding(FSW) is growing owing to the omission of difficulties in traditional welding processes. In the current investigation, artificial neural network(ANN) technique was employed to p...The application of friction stir welding(FSW) is growing owing to the omission of difficulties in traditional welding processes. In the current investigation, artificial neural network(ANN) technique was employed to predict the microhardness of AA6061 friction stir welded plates. Specimens were welded employing triangular and tapered cylindrical pins. The effects of thread and conical shoulder of each pin profile on the microhardness of welded zone were studied using tow ANNs through the different distances from weld centerline. It is observed that using conical shoulder tools enhances the quality of welded area. Besides, in both pin profiles threaded pins and conical shoulders increase yield strength and ultimate tensile strength. Mean absolute percentage error(MAPE) for train and test data sets did not exceed 5.4% and 7.48%, respectively. Considering the accurate results and acceptable errors in the models' responses, the ANN method can be used to economize material and time.展开更多
Artificial neural network is a powerful technique of computational intelligence and has been applied in a variety of fields such as engineering and computer science. This paper deals with the neural network modeling a...Artificial neural network is a powerful technique of computational intelligence and has been applied in a variety of fields such as engineering and computer science. This paper deals with the neural network modeling and prediction of surface roughness in machining aluminum alloys using data collected from both force and vibration sensors. Two neural network models, including a Multi-Layer Perceptron (MLP) model and a Radial Basis Function (RBF) model, were developed in the present study. Each model includes eight inputs and five outputs. The eight inputs include the cutting speed, the ratio of the feed rate to the tool-edge radius, cutting forces in three directions, and cutting vibrations in three directions. The five outputs are five surface roughness parameters. Described in detail is how training and test data were generated from real-world machining experiments that covered a wide range of cutting conditions. The results show that the MLP model provides significantly higher accuracy of prediction for surface roughness than does the RBF model.展开更多
Rapidly solidified aging is an effective way to refine the microstructure of Cu-Cr-Sn-Zn lead frame alloy and enhance its hardness. The artificial neural network methodology(ANN) along with genetic algorithms were use...Rapidly solidified aging is an effective way to refine the microstructure of Cu-Cr-Sn-Zn lead frame alloy and enhance its hardness. The artificial neural network methodology(ANN) along with genetic algorithms were used for data analysis and optimization. In this paper the input parameters of the artificial neural network (ANN) are the aging temperature and aging time. The outputs of the ANN model are the hardness and conductivity properties. Some explanations of these predicted results from the microstructure and precipitation-hardening viewpoint are given. After the ANN model is trained successfully, genetic algorithms(GAs) are applied for optimizing the aging processes parameters.展开更多
基金Kut Technical Institute for their funding supports。
文摘The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array of the Taguchi method.A proposed numerical model for predicting the correlation of mechanical properties was supplemented with experimental data.The quenching process was conducted using a cooling medium called “nanofluids”.Nanoparticles were dissolved in a liquid phase at various concentrations(0.5%,1%,2.5%,and 5% vf) to prepare the nanofluids.Experimental investigations were done to assess the impact of temperature,base fluid,volume fraction,and soaking time on the mechanical properties.The outcomes showed that all conditions led to a noticeable improvement in the alloy's hardness which reached 100%,the grain size was refined about 80%,and unwanted residual stresses were removed from 50 to 150 MPa.Adding 5% of CuO nanoparticles to oil led to the best grain size refinement,while adding 2.5% of Al_(2)O_(3) nanoparticles to engine oil resulted in the greatest compressive residual stress.The experimental variables were used as the input data for the established numerical ANN model,and the mechanical properties were the output.Upwards of 99% of the training network's correlations seemed to be positive.The estimated result,nevertheless,matched the experimental dataset exactly.Thus,the ANN model is an effective tool for reflecting the effects of quenching conditions on the mechanical properties of AISI 1035.
文摘In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R).
文摘The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid-solution time,artificial aging temperature and artificial aging time.An artificial neural network(ANN) model with a back-propagation(BP) algorithm was used to predict mechanical properties of A357 alloy,and the effects of heat treatment processes on mechanical behavior of this alloy were studied.The results show that this BP model is able to predict the mechanical properties with a high accuracy.This model was used to reflect the influence of heat treatments on the mechanical properties of A357 alloy.Isograms of ultimate tensile strength and elongation were drawn in the same picture,which are very helpful to understand the relationship among aging parameters,ultimate tensile strength and elongation.
基金Project(2007CB613807)supported by the National Basic Research Program of ChinaProject(NCET-07-0696)supported by the New Century Excellent Talents in University,ChinaProject(35-TP-2009)supported by the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
文摘Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was established.In the network model,the input parameters of the model are strain,logarithm strain rate and temperature while flow stress is the output parameter.Multilayer perceptron(MLP) architecture with back-propagation algorithm is utilized.The present study achieves a good performance of the artificial neural network(ANN) model,and the predicted results are in agreement with experimental values.A processing map of Ti40 alloy is obtained with the flow stress predicted by the trained neural network model.The processing map developed by ANN model can efficiently track dynamic recrystallization and flow localization regions of Ti40 alloy during deforming.Subsequently,the safe and instable domains of hot working of Ti40 alloy are identified and validated through microstructural investigations.
基金Project(51344004)supported by the National Natural Science Foundation of China
文摘The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile test. A radial basis function artificial neural network (RBF-ANN) model was developed for the analysis and prediction of the electrical resistivity of the tested alloy during the solid solution process. The results show that the model is capable of predicting the electrical resistivity with remarkable success. The correlation coefficient between the predicted results and experimental data is 0.9958 and the relative error is 0.33%. The predicted data were adopted to construct a novel physical picture which was defined as “solution resistivity map”. As revealed by the map, the optimum domain for the solid solution of the tested alloy is in the temperature range of 465?475 °C and solution time range of 50?60 min. In this domain, the solution of second particles and the recrystallization phenomenon will reach equilibrium.
基金Project(50874045)supported by the National Natural Science Foundation of China
文摘An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass forming alloys. A group of Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were designed based on the dc and their de values were predicted by the ANN model. Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were prepared by injecting into copper mold. The amorphous structures and the determination of the dc of as-cast alloys were ascertained using X-ray diffraction. The results show that the predicted de values of glass forming alloys are in agreement with the corresponding experimental values. Thus the developed ANN model is reliable and adequate for designing the composition and predicting the de of glass forming alloy.
基金supported by National High Technical Research and Development Programme of China(No.2002AA331112)supported by the Doctorate Foundation of Northwestern Polytechnical University.
文摘A developmental research has been carried out to deal with the high performance of Cu-Cr-Zr-Mg lead frame alloy by artificial neural network (ANN). Using the cold working to assist in the aging hardening can improve the the hardness and electrical conductivity properties of Cu-Cr-Zr-Mg lead frame alloy. This paper studies the effect of different extent of cold working on the aging properties by a supervised ANN to model the non-linear relationship between processing parameters and the properties. The back-propagation (BP) training algorithm is improved by Levenberg-Marquardt algorithm. A basic repository on the domain knowledge of cold worked aging processes is established via sufficient data mining by the network. The predicted values of the ANN coincide well with the tested data. So an important foundation has been laid for prediction and optimum controlling the rolling and aging properties of Cu-Cr-Zr-Mg alloy.
基金This work was supported by the stae“863 plan”,under Grant No.2002AA331112by the Major Science and Technology Project of Henan Province,China,under Grant No.0122021300.
文摘A supervised artificial neural network (ANN) to model the nonlinear relationship between parameters of thermomechanical treatment processes with respect to hardness and conductivity properties was proposed for Cu-Cr-Zr alloy. The improved model was developed by the Levenberg-Marquardt training algorithm. A basic repository on the domain knowledge of thermomechanical treatment processes is established via sufficient data acquisition by the network. The results showed that the ANN system is an effective way and can be successfully used to predict and analyze the properties of Cu-Cr-Zr alloy.
基金This project is financially suported by the State"863 Plan"(No.2002AA331112)
文摘The non-linear relationship between parameters of rapidly solidified agingprocesses and mechancal and electrical properties of Cu-Cr-Zr alloy is available by using asupervised artificial neural network (ANN). A knowledge repository of rapidly solidified agingprocesses is established via sufficient data learning by the network. The predicted values of theneural network are in accordance with the tested data. So an effective measure for foreseeing andcontrolling the properties of the processing is provided.
文摘Hot compression experiments were conducted on Ti 15 3 alloy specimens using Gleeble 1500 Thermal Simulator.These tests were focused to obtain the flow stress data under various conditions of strain,strain rate and temperature. On the basis of these data, the predicting model for the nonlinear relation between flow stress and deformation strain,strain rate and temperature for Ti 15 3 alloy was developed with a back propagation artificial neural network method. Results show that the neural network can reproduce the flow stress in the sampled data and predict the nonsampled data well. Thus the neural network method has been verified to be used to tackle hot deformation problems of Ti 15 3 alloy. [
文摘The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over 360~480 ℃ with strain rates in the range of 0.01~1 s-1 and the largest deformation up to 60%. On the basis of experiments, a BP artificial neural network (ANN) model was constructed to predict 2A70 aluminum alloy flow stress. True strain, strain rates and temperatures were input to the network, and flow stress was the only output. The comparison between predicted values and experimental data showed that the relative error for the trained model was less than ±3% for the sampled data while it was less than ±6% for the non-sampled data. Furthermore, the neural network model gives better results than nonlinear regression method. It is evident that the model constructed by BP ANN can be used to accurately predict the 2A70 alloy flow stress.
基金Project(2006AA03Z528) supported by the National High-Tech Research and Development Program of ChinaProject(102102210174) supported by the Science and Technology Research Project of Henan Province,ChinaProject(2008ZDYY005) supported by Special Fund for Important Forepart Research in Henan University of Science and Technology
文摘In order to predict and control the properties of Cu-Cr-Sn-Zn alloy,a model of aging processes via an artificial neural network(ANN) method to map the non-linear relationship between parameters of aging process and the hardness and electrical conductivity properties of the Cu-Cr-Sn-Zn alloy was set up.The results show that the ANN model is a very useful and accurate tool for the property analysis and prediction of aging Cu-Cr-Sn-Zn alloy.Aged at 470-510 ℃ for 4-1 h,the optimal combinations of hardness 110-117(HV) and electrical conductivity 40.6-37.7 S/m are available respectively.
文摘The aging hardening process makes it possible to get higher hardness and electrical conductivity of lead frame copper alloy. The process has only been studied empirically by trial-and-error method so far. The use of a supervised artificial neural network(ANN) was proposed to model the non-linear relationship between parameters of aging process with respect to hardness and conductivity properties of Cu-Cr-Zr alloy. The improved model was developed by the Levenberg-Marquardt training algorithm. A basic repository on the domain knowledge of aging process was established via sufficient data mining by the network. The results show that the ANN system is effective and successful for predicting and analyzing the properties of Cu-Cr-Zr alloy.
基金Project(2002AA302505) supported by the Hi-tech Research and Development Program of China
文摘A novel data mining approach,based on artificial neural network(ANN) using differential evolution(DE) training algorithm,was proposed to model the non-linear relationship between parameters of aging processes and mechanical and electrical properties of Cu-15Ni-8Sn-0.4Si alloy.In order to improve predictive accuracy of ANN model,the leave-one-out-cross-validation (LOOCV) technique was adopted to automatically determine the optimal number of neurons of the hidden layer.The forecasting performance of the proposed global optimization algorithm was compared with that of local optimization algorithm.The present calculated results are consistent with the experimental values,which suggests that the proposed evolutionary artificial neural network algorithm is feasible and efficient.Moreover,the experimental results illustrate that the DE training algorithm combined with gradient-based training algorithm achieves better convergence performance and the lowest forecasting errors and is therefore considered to be a promising alternative method to forecast the hardness and electrical conductivity of Cu-15Ni-8Sn-0.4Si alloy.
文摘A model is developed for predicting the correlation between processing parameters and the technical target of double glow by applying artificial neural network (ANN). The input parameters of the neural network (NN) are source voltage, workplace voltage, working pressure and distance between source electrode and workpiece. The output of the NN model is three important technical targets, namely the gross element content, the thickness of surface alloying layer and the absorption rate (the ratio of the mass loss of source materials to the increasing mass of workpiece) in the processing of double glow plasma surface alloying. The processing parameters and technical target are then used as a training set for an artificial neural network. The model is based on multiplayer feedforward neural network. A very good performance of the neural network is achieved and the calculated results are in good agreement with the experimental ones.
文摘The hat deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over a wide range of temperatures 360-480℃ with strain rates of 0.01-1s^-1 and the largest deformation of 60%, and the true stress of the material was obtained under the above-mentioned conditions. The experimental results shows that 2A70 aluminum alloy is a kind of aluminum alloy with the property of dynamic recovery; its flow stress declines with the increase of temperature, while its flow stress increases with the increase of strain rates. On the basis of experiments, the constitutive relationship of the 2A70 aluminum alloy was constructed using a BP artificial neural network. Comparison of the predicted values with the experimental data shows that the relative error of the trained model is less than ±3% for the sampled data while it is less than ±6% for the nonsampled data. It is evident that the model constructed by BP ANN can accurately predict the flow stress of the 2A70 alloy.
基金Project(50725413)supported by the National Natural Science Foundation of ChinaProject(2007CB613704)supported by the National Basic Research Program of ChinaProject(2010CSTC-BJLKR)supported by Chongqing Science and Technology Commission,China
文摘Neural network models of mechanical properties prediction for wrought magnesium alloys were improved by using more reasonable parameters, and were used to develop new types of magnesium alloys. The parameters were confirmed by comparing prediction errors and correlation coefficients of models, which have been built with all the parameters used commonly with training of all permutations and combinations. The application was focused on Mg-Zn-Mn and Mg-Zn-Y-Zr alloys. The prediction of mechanical properties of Mg-Zn-Mn alloys and the effects of mole ratios of Y to Zn on the strengths in Mg-Zn-Y-Zr alloys were investigated by using the improved models. The predicted results are good agreement with the experimental values. A high strength extruded Mg-Zn-Zr-Y alloy was also developed by the models. The applications of the models indicate that the improved models can be used to develop new types of wrought magnesium alloys.
文摘The application of friction stir welding(FSW) is growing owing to the omission of difficulties in traditional welding processes. In the current investigation, artificial neural network(ANN) technique was employed to predict the microhardness of AA6061 friction stir welded plates. Specimens were welded employing triangular and tapered cylindrical pins. The effects of thread and conical shoulder of each pin profile on the microhardness of welded zone were studied using tow ANNs through the different distances from weld centerline. It is observed that using conical shoulder tools enhances the quality of welded area. Besides, in both pin profiles threaded pins and conical shoulders increase yield strength and ultimate tensile strength. Mean absolute percentage error(MAPE) for train and test data sets did not exceed 5.4% and 7.48%, respectively. Considering the accurate results and acceptable errors in the models' responses, the ANN method can be used to economize material and time.
文摘Artificial neural network is a powerful technique of computational intelligence and has been applied in a variety of fields such as engineering and computer science. This paper deals with the neural network modeling and prediction of surface roughness in machining aluminum alloys using data collected from both force and vibration sensors. Two neural network models, including a Multi-Layer Perceptron (MLP) model and a Radial Basis Function (RBF) model, were developed in the present study. Each model includes eight inputs and five outputs. The eight inputs include the cutting speed, the ratio of the feed rate to the tool-edge radius, cutting forces in three directions, and cutting vibrations in three directions. The five outputs are five surface roughness parameters. Described in detail is how training and test data were generated from real-world machining experiments that covered a wide range of cutting conditions. The results show that the MLP model provides significantly higher accuracy of prediction for surface roughness than does the RBF model.
文摘Rapidly solidified aging is an effective way to refine the microstructure of Cu-Cr-Sn-Zn lead frame alloy and enhance its hardness. The artificial neural network methodology(ANN) along with genetic algorithms were used for data analysis and optimization. In this paper the input parameters of the artificial neural network (ANN) are the aging temperature and aging time. The outputs of the ANN model are the hardness and conductivity properties. Some explanations of these predicted results from the microstructure and precipitation-hardening viewpoint are given. After the ANN model is trained successfully, genetic algorithms(GAs) are applied for optimizing the aging processes parameters.