A NiAl/TiB2 nanocomposite is synthesized by mechanical alloying elemental powders. Upon milling for a certain time, an abrupt exothermic reaction occurs and a large amount of NiAl and TiB2 compounds form simultaneousl...A NiAl/TiB2 nanocomposite is synthesized by mechanical alloying elemental powders. Upon milling for a certain time, an abrupt exothermic reaction occurs and a large amount of NiAl and TiB2 compounds form simultaneously. It is suggested that two separate chemical reactions,i.e. Ni+Al →NiAl and Ti+2B→TiB2, are involved during the exothermic reaction. Additionof Ti and B to Ni-Al system impedes the structural evolution of Ni and Al powders and delays the abrupt reaction. The final products are equilibrium phases without any metastable phases formed. This type of reaction is suggested to be suitable for alloy systems with two large heatrelease reactions.展开更多
(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with...(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.展开更多
A suitable combustion synthesis and densification process was designed to fabricate dense NiAl/ TiB2 composites from Ni-Al- Ti-B system. Combustion synthesis processing and microstructure characteristics of products w...A suitable combustion synthesis and densification process was designed to fabricate dense NiAl/ TiB2 composites from Ni-Al- Ti-B system. Combustion synthesis processing and microstructure characteristics of products were studied in detail. The results show that the amount of TiB2 ceramics has a great influence on the combustion synthesis processing and microstructure; with the increase of the amount of TiB2 ceramics, the combustion temperature and combustion velocity increase rapidly. The volume of synthesized products and the grain size of ceramics particle size are also affected by the amount of TiB2 ceramics. TiB2 ceramics fiber can be produced in this synthesis system. The dense NiAl/ TiB2 composites with residual porosity of no more than 1% are fabricated by the combustion synthesis and hot pressing, the mechanical properties of the dense NiAl/ TiB2 composites increase with increase of the amount of TiB2 ceramics.展开更多
The NiAl–TiC–TiB2 composites were processed by self-propagating high-temperature synthesis(SHS) method using raw powders of Ni, Al, Ti, B4 C, TiC, and TiB2, and their microstructure and micro-hardness were investi...The NiAl–TiC–TiB2 composites were processed by self-propagating high-temperature synthesis(SHS) method using raw powders of Ni, Al, Ti, B4 C, TiC, and TiB2, and their microstructure and micro-hardness were investigated. The TiC–TiB2 in NiAl matrix, with contents from 10 to 30 wt%, emerged with the use of two methods: in situ formed and externally added. The results show that all final products are composed of three phases of NiAl, TiC, and TiB2. The microstructures of NiAl–TiC–TiB2 composites with in situ-formed TiC and TiB2 are fine, and all the three phases are distributed uniformly. The grains of NiAl matrix in the composites have been greatly refined, and the micro-hardness of NiAl increases from 381 HV100 to 779 HV100. However, the microstructures of NiAl–TiC–TiB2 composites with externally added TiC and TiB2 are coarse and inhomogeneous, with severe agglomeration of TiC and TiB2 particles. The samples containing externally added 30 wt% TiC–TiB2attain the micro-hardness of 485 HV100. The microstructure evolution and fracture mode of the two kinds of NiAl–TiC–TiB2 composites are different.展开更多
文摘A NiAl/TiB2 nanocomposite is synthesized by mechanical alloying elemental powders. Upon milling for a certain time, an abrupt exothermic reaction occurs and a large amount of NiAl and TiB2 compounds form simultaneously. It is suggested that two separate chemical reactions,i.e. Ni+Al →NiAl and Ti+2B→TiB2, are involved during the exothermic reaction. Additionof Ti and B to Ni-Al system impedes the structural evolution of Ni and Al powders and delays the abrupt reaction. The final products are equilibrium phases without any metastable phases formed. This type of reaction is suggested to be suitable for alloy systems with two large heatrelease reactions.
基金Project(51272141)supported by the National Natural Science Foundation of ChinaProject(ts20110828)supported by the Taishan Scholars Project of Shandong Province,ChinaProject(2015AA034404)supported by the Ministry of Science and Technology of China
文摘(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.
文摘A suitable combustion synthesis and densification process was designed to fabricate dense NiAl/ TiB2 composites from Ni-Al- Ti-B system. Combustion synthesis processing and microstructure characteristics of products were studied in detail. The results show that the amount of TiB2 ceramics has a great influence on the combustion synthesis processing and microstructure; with the increase of the amount of TiB2 ceramics, the combustion temperature and combustion velocity increase rapidly. The volume of synthesized products and the grain size of ceramics particle size are also affected by the amount of TiB2 ceramics. TiB2 ceramics fiber can be produced in this synthesis system. The dense NiAl/ TiB2 composites with residual porosity of no more than 1% are fabricated by the combustion synthesis and hot pressing, the mechanical properties of the dense NiAl/ TiB2 composites increase with increase of the amount of TiB2 ceramics.
基金financially supported by the National Natural Science Foundation of China(Nos.51072104 and 51272141)Tai Shan Scholars Project of Shandong Province,China(No.ts20110828)
文摘The NiAl–TiC–TiB2 composites were processed by self-propagating high-temperature synthesis(SHS) method using raw powders of Ni, Al, Ti, B4 C, TiC, and TiB2, and their microstructure and micro-hardness were investigated. The TiC–TiB2 in NiAl matrix, with contents from 10 to 30 wt%, emerged with the use of two methods: in situ formed and externally added. The results show that all final products are composed of three phases of NiAl, TiC, and TiB2. The microstructures of NiAl–TiC–TiB2 composites with in situ-formed TiC and TiB2 are fine, and all the three phases are distributed uniformly. The grains of NiAl matrix in the composites have been greatly refined, and the micro-hardness of NiAl increases from 381 HV100 to 779 HV100. However, the microstructures of NiAl–TiC–TiB2 composites with externally added TiC and TiB2 are coarse and inhomogeneous, with severe agglomeration of TiC and TiB2 particles. The samples containing externally added 30 wt% TiC–TiB2attain the micro-hardness of 485 HV100. The microstructure evolution and fracture mode of the two kinds of NiAl–TiC–TiB2 composites are different.