The NiA1 Cr(Mo) (Hf, Dy) hypoeutectic alloys were prepared by conventional casting and injection casting techniques respectively, and their microstructure and room temperature mechanical properties were investigat...The NiA1 Cr(Mo) (Hf, Dy) hypoeutectic alloys were prepared by conventional casting and injection casting techniques respectively, and their microstructure and room temperature mechanical properties were investigated. The results reveal that with the addition of Hf and Dy, the Ni2AIHf Heusler phase and NisDy phase form along the NiAI/Cr(Mo) phase boundaries in intercellular region. By the injection casting method, some Ni2AIHf Heusler phase and NisDy phase transform into Hf and Dy solid solutions, respectively. Moreover, the microstructure of the alloy gets good optimization, which can be characterized by the fine interlamellar spacing, high proportion of eutectic cell area and homogeneously distributed fine Ni2AIHf, NisDy, Hf solid solution and Dy solid solutions. Compared with conventional-cast alloy, the room temperature mechanical properties of injection-cast alloy are improved obviously.展开更多
The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous ...The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous Al2O3 scale was formed and owned excellent oxidation resistance in the temperature range of 900-1100°C.When the temperature was up to 1150°C,the continuous Al2O3 oxide film ruptured.Trace rare earth element Ho distributed uniformly in the alloy and relatively high level of Al in Cr(Mo)phase are beneficial to the formation of continuous and compact Al2O3 scale.During the oxidation,a phase transformation fromθ-Al2O3 toα-Al2O3 existed on the surface of oxidation film.It resulted in the abnormal oxidation mass gain happening when the alloy was oxidized at 1000°C or 1050°C.展开更多
基金Project(2012M510271) supported by the China Postdoctoral Science FoundationProject(2012BAI18B05) supported by the Five-Year National Key Technology R&D Program during the 12th Five-year Plan of ChinaProject(2011AA030104) supported by the National High Technology Research and Development Program of China
文摘The NiA1 Cr(Mo) (Hf, Dy) hypoeutectic alloys were prepared by conventional casting and injection casting techniques respectively, and their microstructure and room temperature mechanical properties were investigated. The results reveal that with the addition of Hf and Dy, the Ni2AIHf Heusler phase and NisDy phase form along the NiAI/Cr(Mo) phase boundaries in intercellular region. By the injection casting method, some Ni2AIHf Heusler phase and NisDy phase transform into Hf and Dy solid solutions, respectively. Moreover, the microstructure of the alloy gets good optimization, which can be characterized by the fine interlamellar spacing, high proportion of eutectic cell area and homogeneously distributed fine Ni2AIHf, NisDy, Hf solid solution and Dy solid solutions. Compared with conventional-cast alloy, the room temperature mechanical properties of injection-cast alloy are improved obviously.
基金Project(51101055)supported by the National Natural Science Foundation of China
文摘The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous Al2O3 scale was formed and owned excellent oxidation resistance in the temperature range of 900-1100°C.When the temperature was up to 1150°C,the continuous Al2O3 oxide film ruptured.Trace rare earth element Ho distributed uniformly in the alloy and relatively high level of Al in Cr(Mo)phase are beneficial to the formation of continuous and compact Al2O3 scale.During the oxidation,a phase transformation fromθ-Al2O3 toα-Al2O3 existed on the surface of oxidation film.It resulted in the abnormal oxidation mass gain happening when the alloy was oxidized at 1000°C or 1050°C.