Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2)production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study ...Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2)production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study reports Ir-doped NiFe_(2)O_(4)(NFI,~5 at%Ir)spinel layer with TiO_(2)overlayer(NFI/TiO_(2)),as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell.In dilute(0.1 M)NaCl solutions,the NFI/TiO_(2)marks superior activity and selectivity for chlorine evolution reaction,outperforming the benchmark IrO_(2).Robust operation in near-neutral pH was confirmed.Electroanalyses including operando X-ray absorption spectroscopy unveiled crucial roles of TiO_(2) which serves both as the primary site for Cl−chemisorption and a protective layer for NFI as an ohmic contact.Galvanostatic electrolysis of NH4+-laden synthetic wastewater demonstrated that NFI/TiO_(2)not only achieves quasi-stoichiometric NH_(4)^(+)-to-N_(2)conversion,but also enhances H_(2)generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine.The scaled-up WEC with NFI/TiO_(2)was demonstrated for electrolysis of toilet wastewater.展开更多
Bimetallic metal organic framework(MOF)as a precursor to prepare catalysts with bifunctional catalytic activity of oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)attracts more and more attention.Her...Bimetallic metal organic framework(MOF)as a precursor to prepare catalysts with bifunctional catalytic activity of oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)attracts more and more attention.Herein,hollow oxygen deficiency-enriched NiFe_(2)O_(4) is synthesized by pyrolytic FeNi bimetallic MOF.The defects of rGO during carbonization can act as nucleation sites for FeNi particles.After nucleation and N doping,the FeNi particles were served as catalysts for the deposition of dissolved carbon in the defects of the N/rGO.These deposited carbon,like a bridge,connect N/rGO and hollow oxygen deficiency-enriched NiFe_(2)O_(4) together,which giving full play to the advantages of N/rGO in fast electron transfer,thereby improving its catalytic activity.The resultant NiFe_(2)O_(4)@N/rGO-800 exhibits a low overpotential of 252 mV at 20 mA cm^(-2) for OER and 157 mV at 10 mA cm^(-2) for HER in 1 M KOH,respectively.When used as bifunctional electrodes for overall water splitting,it also shows low cell voltage of 1.60 V and 1.67 V at 10 and 20 mA cm^(-2),respectively.展开更多
基金supported by the National Research Foundation of Korea(NRF)grants(2022R1A2C4001228,2022M3H4A4097524,2022M3I3A1082499,and 2021M3I3A1084818)the Technology Innovation Program(20026415)of the Ministry of Trade,Industry&Energy(MOTIE,Korea)the supports from Nanopac for fabrication of scaled-up reactor.
文摘Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2)production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study reports Ir-doped NiFe_(2)O_(4)(NFI,~5 at%Ir)spinel layer with TiO_(2)overlayer(NFI/TiO_(2)),as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell.In dilute(0.1 M)NaCl solutions,the NFI/TiO_(2)marks superior activity and selectivity for chlorine evolution reaction,outperforming the benchmark IrO_(2).Robust operation in near-neutral pH was confirmed.Electroanalyses including operando X-ray absorption spectroscopy unveiled crucial roles of TiO_(2) which serves both as the primary site for Cl−chemisorption and a protective layer for NFI as an ohmic contact.Galvanostatic electrolysis of NH4+-laden synthetic wastewater demonstrated that NFI/TiO_(2)not only achieves quasi-stoichiometric NH_(4)^(+)-to-N_(2)conversion,but also enhances H_(2)generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine.The scaled-up WEC with NFI/TiO_(2)was demonstrated for electrolysis of toilet wastewater.
基金financially supported by the National Natural Science Foundation of China(Nos.21878231,21676202 and 51603145)Natural Science Foundation of Tianjin(Nos.19JCZDJC37300 and 17JCZDJC38100)supported by the Science and Technology Plans of Tianjin(Nos.17PTSYJC00040 and 18PTSYJC00180)。
文摘Bimetallic metal organic framework(MOF)as a precursor to prepare catalysts with bifunctional catalytic activity of oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)attracts more and more attention.Herein,hollow oxygen deficiency-enriched NiFe_(2)O_(4) is synthesized by pyrolytic FeNi bimetallic MOF.The defects of rGO during carbonization can act as nucleation sites for FeNi particles.After nucleation and N doping,the FeNi particles were served as catalysts for the deposition of dissolved carbon in the defects of the N/rGO.These deposited carbon,like a bridge,connect N/rGO and hollow oxygen deficiency-enriched NiFe_(2)O_(4) together,which giving full play to the advantages of N/rGO in fast electron transfer,thereby improving its catalytic activity.The resultant NiFe_(2)O_(4)@N/rGO-800 exhibits a low overpotential of 252 mV at 20 mA cm^(-2) for OER and 157 mV at 10 mA cm^(-2) for HER in 1 M KOH,respectively.When used as bifunctional electrodes for overall water splitting,it also shows low cell voltage of 1.60 V and 1.67 V at 10 and 20 mA cm^(-2),respectively.