The fluid model,also called the macroscopic model,is commonly used to simulate low temperature and low pressure radiofrequency plasma discharges.By varying the parameters of the model,numerical simulation allows us to...The fluid model,also called the macroscopic model,is commonly used to simulate low temperature and low pressure radiofrequency plasma discharges.By varying the parameters of the model,numerical simulation allows us to study several cases,providing us the physico-chemical information that is often difficult to obtain experimentally.In this work,using the fluid model,we employ numerical simulation to show the effect of pressure and space between the reactor electrodes on the fundamental properties of silicon plasma diluted with ammonia and hydrogen.The results show the evolution of the fundamental characteristics of the plasma discharge as a function of the variation of the pressure and the distance between the electrodes.By examining the pressure-distance product in a range between 0.3 Torr 2.7 cm and 0.7 Torr 4 cm,we have determined the optimal pressure-distance product that allows better deposition of hydrogenated silicon nitride(SiN_(x)H_(y))films which is 0.7 Torr 2.7 cm.展开更多
Incorporating metal nanodots(NDs)into heterostructures for high charge separation and transfer capacities is one of the most effective strategies for improving their photocatalytic activities.However,controlling the s...Incorporating metal nanodots(NDs)into heterostructures for high charge separation and transfer capacities is one of the most effective strategies for improving their photocatalytic activities.However,controlling the space distribution of metal NDs for optimizing charge transport pathways remains a significant challenge,particularly in two-dimensional(2D)face-to-face heterostructures.Herein,we develop a simple targeted self-reduction strategy for selectively loading Ru NDs onto the Ti_(3−x)C_(2)T_(y)(TC)surface of 2D TC/g-C_(3)N_(4)(CN)heterojunction based on the reductive Ti vacancy defects creatively increased during the preparation of TC/CN by reducing calcination.Notably,the optimized Ru/TC/CN photocatalyst exhibits an outstanding H_(2)evolution rate of 3.21 mmol·g^(−1)·h^(−1)and a high apparent quantum efficiency of 30.9%at 380 nm,which is contributed by the unidirectional transfer of the photogenerated electrons from CN to Ru active sites(CN→TC→Ru)and the suppressed backflow of electrons from Ru sites to CN,as revealed by comprehensive characterizations and density functional theory(DFT)calculations.This work provides a novel strategy for synthesizing the highly efficient photocatalysts with a controllable charge transfer paths,which will boost the development of photocatalysis.展开更多
文摘The fluid model,also called the macroscopic model,is commonly used to simulate low temperature and low pressure radiofrequency plasma discharges.By varying the parameters of the model,numerical simulation allows us to study several cases,providing us the physico-chemical information that is often difficult to obtain experimentally.In this work,using the fluid model,we employ numerical simulation to show the effect of pressure and space between the reactor electrodes on the fundamental properties of silicon plasma diluted with ammonia and hydrogen.The results show the evolution of the fundamental characteristics of the plasma discharge as a function of the variation of the pressure and the distance between the electrodes.By examining the pressure-distance product in a range between 0.3 Torr 2.7 cm and 0.7 Torr 4 cm,we have determined the optimal pressure-distance product that allows better deposition of hydrogenated silicon nitride(SiN_(x)H_(y))films which is 0.7 Torr 2.7 cm.
基金the National Natural Science Foundation of China(No.22002142)China Postdoctoral Science Foundation(No.2020T130605)+2 种基金Natural Science Foundation of Henan Province(No.202300410436)Support Plan for College Science and Technology Innovation Team of Henan Province(No.16IRTSTHN001)the Science&Technology Innovation Talent Plan of Henan Province(No.174200510018).
文摘Incorporating metal nanodots(NDs)into heterostructures for high charge separation and transfer capacities is one of the most effective strategies for improving their photocatalytic activities.However,controlling the space distribution of metal NDs for optimizing charge transport pathways remains a significant challenge,particularly in two-dimensional(2D)face-to-face heterostructures.Herein,we develop a simple targeted self-reduction strategy for selectively loading Ru NDs onto the Ti_(3−x)C_(2)T_(y)(TC)surface of 2D TC/g-C_(3)N_(4)(CN)heterojunction based on the reductive Ti vacancy defects creatively increased during the preparation of TC/CN by reducing calcination.Notably,the optimized Ru/TC/CN photocatalyst exhibits an outstanding H_(2)evolution rate of 3.21 mmol·g^(−1)·h^(−1)and a high apparent quantum efficiency of 30.9%at 380 nm,which is contributed by the unidirectional transfer of the photogenerated electrons from CN to Ru active sites(CN→TC→Ru)and the suppressed backflow of electrons from Ru sites to CN,as revealed by comprehensive characterizations and density functional theory(DFT)calculations.This work provides a novel strategy for synthesizing the highly efficient photocatalysts with a controllable charge transfer paths,which will boost the development of photocatalysis.