Metallic antimony(Sb) has been attracted much attentions as anode for lithium-ion batteries due to its high capacity.Nevertheless,the large volume expansion during the lithiation process leads to poor electrochemical ...Metallic antimony(Sb) has been attracted much attentions as anode for lithium-ion batteries due to its high capacity.Nevertheless,the large volume expansion during the lithiation process leads to poor electrochemical performance,which seriously limits the practical application in lithium-ion batteries.Herein,NiSb nanoparticles encapsulated by carbon nanosheets have been developed via a facile strategy and as anode for lithium-ion batteries.In this attractive structure,the carbon nanosheets can effectively avoid volume change of NiSb nanoparticles and inhibit the direct contact of NiSb nanoparticles to the electrolyte during the lithiation/delithiation process.As a result,the NiSb/C nanosheets display an outstanding long cycling performance(405 mA h g-1 after 1000 cycles at 1.0 A g-1) and excellent rate capability(305 mA h g-1 at 2.0 A g-1) when application in lithium-ion batteries.展开更多
A cost-effective,facile solution-based hot-injection synthetic route has been developed to synthesize NiSb nanoparticles in oleylamine(OAm)using commercially available inexpensive precursor with reducing toxicity at a...A cost-effective,facile solution-based hot-injection synthetic route has been developed to synthesize NiSb nanoparticles in oleylamine(OAm)using commercially available inexpensive precursor with reducing toxicity at a relatively low temperature of 160℃.Especially,an organic reductant of borane-tert-butylamine complex is intentionally involved in the reaction system to promote a fast reduction of metallic Ni and Sb for the formation of the NiSb nanoparticles.Structural characterizations reveal that the NiSb nanoparticles are hexagonal phase with space group P63/mmc and they are composed of small granules with size about 10 nm that tend to form agglomerates with porous-like geometries.This is the first report on the generation of transition metal antimonide via solution-based strategy,and the asfabricated nanoparticles possess actively electrocatalytic hydrogen evolution reaction(HER)property in acidic electrolytes when the long-chain ligand of OAm adhered on the surface of the nanoparticles is exchanged by ligand-removal and exchange procedure.It is found that the NiSb nanoparticles as a new kind of non-noble-metal HER electrocatalysts only require overpotentials of 437 and 531 mV to achieve high current densities of 10 and 50 mA/cm^2 respectively,as well as exhibit low charge transfer resistance and excellent HER stability.展开更多
基金the financial support from Guangdong Natural Science Funds for Distinguished Young Scholar(2016A030306010)China Postdoctoral Science Foundation(2017M622675)Natural Science Foundation of Guangdong Province(2018A030313944)
文摘Metallic antimony(Sb) has been attracted much attentions as anode for lithium-ion batteries due to its high capacity.Nevertheless,the large volume expansion during the lithiation process leads to poor electrochemical performance,which seriously limits the practical application in lithium-ion batteries.Herein,NiSb nanoparticles encapsulated by carbon nanosheets have been developed via a facile strategy and as anode for lithium-ion batteries.In this attractive structure,the carbon nanosheets can effectively avoid volume change of NiSb nanoparticles and inhibit the direct contact of NiSb nanoparticles to the electrolyte during the lithiation/delithiation process.As a result,the NiSb/C nanosheets display an outstanding long cycling performance(405 mA h g-1 after 1000 cycles at 1.0 A g-1) and excellent rate capability(305 mA h g-1 at 2.0 A g-1) when application in lithium-ion batteries.
基金supported by the National Natural Science Foundation of China(No.21571166 and No.51271173)
文摘A cost-effective,facile solution-based hot-injection synthetic route has been developed to synthesize NiSb nanoparticles in oleylamine(OAm)using commercially available inexpensive precursor with reducing toxicity at a relatively low temperature of 160℃.Especially,an organic reductant of borane-tert-butylamine complex is intentionally involved in the reaction system to promote a fast reduction of metallic Ni and Sb for the formation of the NiSb nanoparticles.Structural characterizations reveal that the NiSb nanoparticles are hexagonal phase with space group P63/mmc and they are composed of small granules with size about 10 nm that tend to form agglomerates with porous-like geometries.This is the first report on the generation of transition metal antimonide via solution-based strategy,and the asfabricated nanoparticles possess actively electrocatalytic hydrogen evolution reaction(HER)property in acidic electrolytes when the long-chain ligand of OAm adhered on the surface of the nanoparticles is exchanged by ligand-removal and exchange procedure.It is found that the NiSb nanoparticles as a new kind of non-noble-metal HER electrocatalysts only require overpotentials of 437 and 531 mV to achieve high current densities of 10 and 50 mA/cm^2 respectively,as well as exhibit low charge transfer resistance and excellent HER stability.