NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibi...NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibility.Because of the unsatisfying processabilities and manufacturing requirements of complex NiTi components,additive manufacturing technology,especially laser powder bed fusion(LPBF),is appropriate for fabricating NiTi products.This paper comprehensively summarizes recent research on the NiTi alloys fabricated by LPBF,including printability,microstructural characteristics,phase transformation behaviors,lattice structures,and applications.Process parameters and microstructural features mainly influence the printability of LPBF-processed NiTi alloys.The phase transformation behaviors between austenite and martensite phases,phase transformation temperatures,and an overview of the influencing factors are summarized in this paper.This paper provides a comprehensive review of the mechanical properties with unique strain-stress responses,which comprise tensile mechanical properties,thermomechanical properties(e.g.critical stress to induce martensitic transformation,thermo-recoverable strain,and SE strain),damping properties and hardness.Moreover,several common structures(e.g.a negative Poisson’s ratio structure and a diamond-like structure)are considered,and the corresponding studies are summarized.It illustrates the various fields of application,including biological scaffolds,shock absorbers,and driving devices.In the end,the paper concludes with the main achievements from the recent studies and puts forward the limitations and development tendencies in the future.展开更多
Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, convention...Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, conventional water atomization (CWA) and elemental metal mechanical mixing (EMMM) were sintered to segments and then compared in mechanical properties, holding force between matrix and diamond, fracture morphology of blank and sintering diamond section containing matrix. The results showed that the pre-alloyed powder prepared by UPWA exhibits the best mechanical properties including the relative density, the hardness and the bending strength of matrix sinteredsegment. Sintered segments fractography of UPWA pre-alloyed powder indicatesmechanical mosaic strength and chemical bonding force between the pre-alloyed powder and the diamond, leading to the great increase in the holding force between matrix and diamond. The mechanical performance andthe service life of diamond tools were greatly improved by UPWA pre-alloyed powders.展开更多
激光粉末床熔融(laser powder bed fusion,LPBF)成形NiTi合金由于Ni元素的蒸发导致成分偏离粉末设计成分,而NiTi合金的形状记忆效应、超弹性等性能受Ni含量影响极大。因此有必要对不同Ni含量NiTi合金的LPBF成形性、显微组织以及力学性...激光粉末床熔融(laser powder bed fusion,LPBF)成形NiTi合金由于Ni元素的蒸发导致成分偏离粉末设计成分,而NiTi合金的形状记忆效应、超弹性等性能受Ni含量影响极大。因此有必要对不同Ni含量NiTi合金的LPBF成形性、显微组织以及力学性能开展研究。采用真空电极感应熔炼气雾化技术制备了Ni_(50.8)Ti、Ni_(51.0)Ti以及Ni_(51.5)Ti(原子分数,%)3种预合金粉末,研究其在不同工艺参数下的冶金缺陷、显微组织及力学性能的演化规律。结果表明,高Ni含量NiTi合金在LPBF成形过程中容易产生垂直于建造方向的裂纹,成形性较低Ni含量NiTi合金差。Ni_(51.5)Ti合金室温下的临界应力可达476 MPa,但断裂伸长率仅为2%;Ni_(50.8)Ti合金临界应力仅为122 MPa,断裂伸长率可达8%。展开更多
Porous NiTi shape memory alloy (SMA) is a novel biomedical material used for human hard tissue implant. The influence of elemental titanium powder characteristics such as powder morphology, particle size and specific ...Porous NiTi shape memory alloy (SMA) is a novel biomedical material used for human hard tissue implant. The influence of elemental titanium powder characteristics such as powder morphology, particle size and specific surface area (SSA) on the minimal ignition temperature, combustion temperature and final product of porous NiTi SMA fabricated by combustion synthesis method was investigated in this paper by scanning electron microscopy (SEM) and laser diffraction. The preliminary data indicated that the titanium powder characteristics had a strong effect on combustion synthesis of porous NiTi SMA.展开更多
In this work,NiTi samples with different thicknesses(0.15-1.00 mm)were fabricated by laser powder bed fusion(LPBF)under variable scanning speeds(500-1200 mm s^(-1)).The densification behavior,phase transformation beha...In this work,NiTi samples with different thicknesses(0.15-1.00 mm)were fabricated by laser powder bed fusion(LPBF)under variable scanning speeds(500-1200 mm s^(-1)).The densification behavior,phase transformation behavior,and mechanical properties of the sample with different thicknesses are studied.The results indicate a strong size effect in the LPBF-fabricated NiTi alloy.The decrease of the sample thickness results in(i)the increase of porosity,(ii)the decrease of the number of adhered NiTi powder particles at the surface,(iii)the monotonous decrease of the martensitic transformation temperatures(MTTs),and(iv)the decrease of the shape recovery temperature.The influence of sample thickness on the melt-pool behavior,and thus the microstructure and performance of NiTi alloys are discussed.It is suggested that the melt-pool is deeper and narrower in the thin samples than in the thick samples.We conclude that,apart from the LPBF process conditions,the sample dimensions have also to be considered to fabricate NiTi structures with predictable properties.展开更多
Concerning the high demand for lightweight and multifunctional properties of engineering structures, the coral skeleton-inspired sheet-based(CSS) structure, which was a novel bio-mimicking coral skeleton wall-septa ar...Concerning the high demand for lightweight and multifunctional properties of engineering structures, the coral skeleton-inspired sheet-based(CSS) structure, which was a novel bio-mimicking coral skeleton wall-septa architecture with a unique ability to resist wave shocks was fabricated using NiTi alloy by laser powder bed fusion(LPBF) technology. The effects of laser energy density(LED) on surface morphologies, microstructures, phase transformation behavior, and mechanical properties of LPBFfabricated CSS structures were systematically investigated. The results indicated that the size deviation was predominantly governed by powder adhesion and step effect. NiTi CSS structures with LED of 71 J·mm~(-3)possessed superior compressive modulus(~400 MPa), ultimate strength(~13 MPa), and energy absorption efficiency(~69%). The compression fracture mechanism of the LPBF-fabricated NiTi CSS structures was revealed to be predominantly brittle fracture accompanied by ductile fracture. Furthermore, the Ni_4Ti_3 nanoprecipitates induced the precipitation strengthening effect, enabling better shape memory response at LED of 71 J·mm~(-3), with a recoverable strain of 3.63% and recovery ratio of 90.8%, after heating under a pre-strain of 4%. This study highlights the importance of a bionic design strategy for enhancing the mechanical properties of NiTi components and offers the possibility to tailor its functional properties.展开更多
基金sponsored by the Natural and Science Foundation of China(Grant No.52275331)the Key-Area Research and Development Program of Guangdong Province(No.2020B090923001)+3 种基金the Key Research and Development Program of Hubei Province(No.2022BAA011)the Academic Frontier Youth Team(2018QYTD04)at Huazhong University of Science and Technology(HUST)the Hong Kong Scholars Program(No.XJ2022014)the Laboratory Project of Science and Technology on Power Beam Processes Laboratory。
文摘NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibility.Because of the unsatisfying processabilities and manufacturing requirements of complex NiTi components,additive manufacturing technology,especially laser powder bed fusion(LPBF),is appropriate for fabricating NiTi products.This paper comprehensively summarizes recent research on the NiTi alloys fabricated by LPBF,including printability,microstructural characteristics,phase transformation behaviors,lattice structures,and applications.Process parameters and microstructural features mainly influence the printability of LPBF-processed NiTi alloys.The phase transformation behaviors between austenite and martensite phases,phase transformation temperatures,and an overview of the influencing factors are summarized in this paper.This paper provides a comprehensive review of the mechanical properties with unique strain-stress responses,which comprise tensile mechanical properties,thermomechanical properties(e.g.critical stress to induce martensitic transformation,thermo-recoverable strain,and SE strain),damping properties and hardness.Moreover,several common structures(e.g.a negative Poisson’s ratio structure and a diamond-like structure)are considered,and the corresponding studies are summarized.It illustrates the various fields of application,including biological scaffolds,shock absorbers,and driving devices.In the end,the paper concludes with the main achievements from the recent studies and puts forward the limitations and development tendencies in the future.
基金Projects(2010SK3172,2015JC3005)supported by the Key Program of Science and Technology Project of Hunan Province,China
文摘Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, conventional water atomization (CWA) and elemental metal mechanical mixing (EMMM) were sintered to segments and then compared in mechanical properties, holding force between matrix and diamond, fracture morphology of blank and sintering diamond section containing matrix. The results showed that the pre-alloyed powder prepared by UPWA exhibits the best mechanical properties including the relative density, the hardness and the bending strength of matrix sinteredsegment. Sintered segments fractography of UPWA pre-alloyed powder indicatesmechanical mosaic strength and chemical bonding force between the pre-alloyed powder and the diamond, leading to the great increase in the holding force between matrix and diamond. The mechanical performance andthe service life of diamond tools were greatly improved by UPWA pre-alloyed powders.
文摘Porous NiTi shape memory alloy (SMA) is a novel biomedical material used for human hard tissue implant. The influence of elemental titanium powder characteristics such as powder morphology, particle size and specific surface area (SSA) on the minimal ignition temperature, combustion temperature and final product of porous NiTi SMA fabricated by combustion synthesis method was investigated in this paper by scanning electron microscopy (SEM) and laser diffraction. The preliminary data indicated that the titanium powder characteristics had a strong effect on combustion synthesis of porous NiTi SMA.
基金supported by the National Nature Science Foun-dation of China(grant No.51905310)Natural Science Founda-tion of Shandong Province(Nos.ZR2020YQ39 and ZR2020ZD05)+2 种基金the Young Scholars Program of Shandong University(grant No.2018WLJH24)and Shandong Medical Products Administration(grant No.SDNMPAFZLX202204)the sup-port from MCIN/AEI/10.13039/501100011033 and FEDER Una Man-era de Hacer Europa,EU(project No.RTI2018-094683-B-C51).
文摘In this work,NiTi samples with different thicknesses(0.15-1.00 mm)were fabricated by laser powder bed fusion(LPBF)under variable scanning speeds(500-1200 mm s^(-1)).The densification behavior,phase transformation behavior,and mechanical properties of the sample with different thicknesses are studied.The results indicate a strong size effect in the LPBF-fabricated NiTi alloy.The decrease of the sample thickness results in(i)the increase of porosity,(ii)the decrease of the number of adhered NiTi powder particles at the surface,(iii)the monotonous decrease of the martensitic transformation temperatures(MTTs),and(iv)the decrease of the shape recovery temperature.The influence of sample thickness on the melt-pool behavior,and thus the microstructure and performance of NiTi alloys are discussed.It is suggested that the melt-pool is deeper and narrower in the thin samples than in the thick samples.We conclude that,apart from the LPBF process conditions,the sample dimensions have also to be considered to fabricate NiTi structures with predictable properties.
基金supported by the National Natural Science Foundation of China (Grant No. 52225503)the Key Research and Development Program of Jiangsu Province (Grant Nos. BE2022069, BE2022069-1)+1 种基金the National Natural Science Foundation of China for Creative Research Groups (Grant No. 51921003)the National Key Research and Development Program of China (Grant No. 2022YFB3805701)。
文摘Concerning the high demand for lightweight and multifunctional properties of engineering structures, the coral skeleton-inspired sheet-based(CSS) structure, which was a novel bio-mimicking coral skeleton wall-septa architecture with a unique ability to resist wave shocks was fabricated using NiTi alloy by laser powder bed fusion(LPBF) technology. The effects of laser energy density(LED) on surface morphologies, microstructures, phase transformation behavior, and mechanical properties of LPBFfabricated CSS structures were systematically investigated. The results indicated that the size deviation was predominantly governed by powder adhesion and step effect. NiTi CSS structures with LED of 71 J·mm~(-3)possessed superior compressive modulus(~400 MPa), ultimate strength(~13 MPa), and energy absorption efficiency(~69%). The compression fracture mechanism of the LPBF-fabricated NiTi CSS structures was revealed to be predominantly brittle fracture accompanied by ductile fracture. Furthermore, the Ni_4Ti_3 nanoprecipitates induced the precipitation strengthening effect, enabling better shape memory response at LED of 71 J·mm~(-3), with a recoverable strain of 3.63% and recovery ratio of 90.8%, after heating under a pre-strain of 4%. This study highlights the importance of a bionic design strategy for enhancing the mechanical properties of NiTi components and offers the possibility to tailor its functional properties.