期刊文献+
共找到734篇文章
< 1 2 37 >
每页显示 20 50 100
Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: a review 被引量:9
1
作者 Shuaishuai Wei Jinliang Zhang +6 位作者 Lei Zhang Yuanjie Zhang Bo Song Xiaobo Wang Junxiang Fan Qi Liu Yusheng Shi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期1-29,共29页
NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibi... NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibility.Because of the unsatisfying processabilities and manufacturing requirements of complex NiTi components,additive manufacturing technology,especially laser powder bed fusion(LPBF),is appropriate for fabricating NiTi products.This paper comprehensively summarizes recent research on the NiTi alloys fabricated by LPBF,including printability,microstructural characteristics,phase transformation behaviors,lattice structures,and applications.Process parameters and microstructural features mainly influence the printability of LPBF-processed NiTi alloys.The phase transformation behaviors between austenite and martensite phases,phase transformation temperatures,and an overview of the influencing factors are summarized in this paper.This paper provides a comprehensive review of the mechanical properties with unique strain-stress responses,which comprise tensile mechanical properties,thermomechanical properties(e.g.critical stress to induce martensitic transformation,thermo-recoverable strain,and SE strain),damping properties and hardness.Moreover,several common structures(e.g.a negative Poisson’s ratio structure and a diamond-like structure)are considered,and the corresponding studies are summarized.It illustrates the various fields of application,including biological scaffolds,shock absorbers,and driving devices.In the end,the paper concludes with the main achievements from the recent studies and puts forward the limitations and development tendencies in the future. 展开更多
关键词 niti shape memory alloys laser powder bed fusion transformation behavior thermomechanical response lattice structures
下载PDF
Modeling of Ni_4Ti_3 precipitation during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys
2
作者 柯常波 曹姗姗 +1 位作者 马骁 张新平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2578-2585,共8页
The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initi... The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initial Ni-contents of 51.5% and 52.5% (mole fraction), respectively. The simulation results show that, during stress-free aging of the NiTi alloy with a low supersaturation of Ni (i.e., Ti-51.5%Ni), the Ni4Ti3 precipitates exhibit a heterogeneous distribution with a high number density of particles at the grain boundary, leaving most of the grain interiors free of precipitates; while for the NiTi alloy with a high supersaturation of Ni (i.e., Ti-52.5%Ni), the Ni4Ti3 precipitates show a homogeneous distribution across the entire simulation system. The stress-assisted aging can give rise to homogeneous distribution of the precipitates, regardless of the initial Ni-content; however, the distribution of variant type within the two grains is heterogeneous. 展开更多
关键词 niti shape memory alloy Ni4Ti3 precipitate low-angle grain boundary martensitic transformation phase field simulation
下载PDF
Microstructure and corrosion behavior of NiTi shape memory alloys sintered in the SPS process 被引量:3
3
作者 C.Velmurugan V.Senthilkumar P.S.Kamala 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第10期1311-1321,共11页
NiTi shape memory alloys(SMAs) was developed using the spark-plasma sintering(SPS) process with different average particle size(45 μm and 10 μm) under various temperature. The influence of particle size and temperat... NiTi shape memory alloys(SMAs) was developed using the spark-plasma sintering(SPS) process with different average particle size(45 μm and 10 μm) under various temperature. The influence of particle size and temperature on the density, microstructure, and corrosion behavior of the NiTi in simulated body fluid was examined. The porosity decreased with increasing sintering temperature and decreasing particle size, which resulted in an increase in density of the alloy. Increasing the sintering temperature led to the formation of Ni-and Ti-rich intermetallic such as Ni3Ti and NiTi2. The formation of these secondary phases influenced the corrosion behavior of NiTi by changing its chemical composition. The planar structure of NiTi was transformed into a dendritic structure at 900℃, which resulted in the formation of uniform oxide and phosphate layers on the entire surface. A high corrosion potential and low corrosion current density were achieved with NiTi prepared with 10 μm particles at 900℃, which exhibited superior corrosion resistance. 展开更多
关键词 shape memory alloys niti MICROSTRUCTURE corrosion spark-plasma SINTERING
下载PDF
Effects of Ta Addition on NiTi Shape Memory Alloys 被引量:3
4
作者 Jianlu MA, Jiangnan LIU+, Zhengpin WANG and Fei XUE (Dept. of Materials Science & Engineering, Xi’an Institute of Technology, Xi’an 710032, China) Kuang-Hsi WU and Zhongjie PU (Department of Mechanical Engineering, Florida International University, USA) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第5期534-536,共3页
The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temper... The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temperatures of the Ni51Ti49 binary alloy increased drastically by an addition of 0~4 at. pet Ta, but only slightly when the concentration exceeded 4 at. pct; the addition of Ta greatly decreases the sensitivity of the martensitic transformations to the variation in the Ni-Ti ratio. The addition of Ta to the NiTi binary alloy can improve its X-ray visibility. 展开更多
关键词 niti Effects of Ta Addition on niti shape memory alloys TA
下载PDF
Review on structural fatigue of NiTi shape memory alloys:Pure mechanical and thermo-mechanical ones 被引量:3
5
作者 Guozheng Kang Di Song 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第6期245-254,共10页
Structural fatigue of NiTi shape memory alloys is a key issue that should be solved in order to promote their engineering applications and utilize their unique shape memory effect and super-elasticity more sufficientl... Structural fatigue of NiTi shape memory alloys is a key issue that should be solved in order to promote their engineering applications and utilize their unique shape memory effect and super-elasticity more sufficiently. In this paper, the latest progresses made in experimental and theoretical analyses for the structural fatigue features of NiTi shape memory alloys are reviewed. First, macroscopic experimental observations to the pure mechanical and thermo-mechanical fatigue features of the alloys are summarized; then the state-of-arts in the mechanism analysis of fatigue rupture are addressed; further, advances in the construction of fatigue failure models are provided; finally, summary and future topics are outlined. 展开更多
关键词 niti shape memory alloy Mechanical fatigue Thermo-mechanical fatigue Failure mechanism Failure model
下载PDF
Experimental investigation of the cyclic degradation of the one-way shape memory effect of NiTi alloys
6
作者 Tian-xing Zhao Guo-zheng Kang +1 位作者 Chao Yu Qian-hua Kan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第12期1539-1550,共12页
Based on stress-and strain-controlled cyclic tension-unloading-heat-cooling tests,cyclic degradation of the one-way shape memory effect(OWSME)of NiTi shape memory alloys(SMAs)was investigated.It was seen,in thermo-mec... Based on stress-and strain-controlled cyclic tension-unloading-heat-cooling tests,cyclic degradation of the one-way shape memory effect(OWSME)of NiTi shape memory alloys(SMAs)was investigated.It was seen,in thermo-mechanical coupled cyclic tests,that residual strain after each cycle accumulated,but the martensite reorientation stress and dissipation energy-per-cycle decreased as the number of cycles increased.Meanwhile,the cyclic degradation of OWSME was aggravated by increasing the stress/strain amplitude.In addition,the stress-strain response of NiTi SMAs was further investigated by performing simultaneous thermo-mechanical coupled cyclic tests with various phase-angle differences between the mechanical and thermal cyclic loadings.It can be concluded that such cyclic response depends significantly on prescribed phase-angle differences.Obtained experimental results are helpful for both the development of constitutive models and engineering applications of NiTi SMAs. 展开更多
关键词 niti shape memory alloys one-way shape memory effect CYCLIC degradation THERMO-MECHANICAL coupling MARTENSITE orientation
下载PDF
Effect of solution treatment and aging on microstructural evolution and mechanical behavior of NiTi shape memory alloy 被引量:6
7
作者 江树勇 赵亚楠 +2 位作者 张艳秋 胡励 梁玉龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3658-3667,共10页
As-received nickel-titanium (NiTi) shape memory alloy with a nominal composition of Ni50.9Ti49.1 (mole fraction,%) was subjected to solution treatment at 1123 K for 2 h and subsequent aging for 2 h at 573 K, 723 K... As-received nickel-titanium (NiTi) shape memory alloy with a nominal composition of Ni50.9Ti49.1 (mole fraction,%) was subjected to solution treatment at 1123 K for 2 h and subsequent aging for 2 h at 573 K, 723 K and 873 K, respectively. The influence of solution treatment and aging on microstructural evolution and mechanical behavior of NiTi alloy was systematically investigated by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and compression test. Solution treatment contributes to eliminating the Ti2Ni phase in the as-received NiTi sample, in which the TiC phase is unable to be removed. Solution treatment leads to ordered domain of atomic arrangement in NiTi alloy. In all the aged NiTi samples, the Ni4Ti3 precipitates, the R phase and the B2 austenite coexist in the NiTi matrix at room temperature, while the martensitic twins can be observed in the NiTi samples aged at 873 K. In the NiTi samples aged at 573 and 723 K, the fine and dense Ni4Ti3 precipitates distribute uniformly in the NiTi matrix, and thus they are coherent with the B2 matrix. However, in the NiTi sample aged at 873 K, the Ni4Ti3 precipitates exhibit the very inhomogeneous size, and they are coherent, semi-coherent and incoherent with the B2 matrix. In the case of aging at 723 K, the NiTi sample exhibits the maximum yield strength, where the fine and homogeneous Ni4Ti3 precipitates act as the effective obstacles against the dislocation motion, which results in the maximum critical resolved shear stress for dislocation slip. 展开更多
关键词 niti alloy shape memory alloy microstructural evolution mechanical properties solution treatment AGING
下载PDF
Crystallization of amorphous NiTi shape memory alloy fabricated by severe plastic deformation 被引量:5
8
作者 江树勇 唐明 +3 位作者 赵亚楠 胡励 张艳秋 梁玉龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1758-1765,共8页
Based on the local canning compression,severe plastic deformation(SPD) is able to lead to the almost complete amorphous nickel-titanium shape memory alloy(NiTi SMA),in which a small amount of retained nanocrystall... Based on the local canning compression,severe plastic deformation(SPD) is able to lead to the almost complete amorphous nickel-titanium shape memory alloy(NiTi SMA),in which a small amount of retained nanocrystalline phase is embedded in the amorphous matrix.Crystallization of amorphous NiTi alloy annealed at 573,723 and 873 K was investigated,respectively.The crystallization kinetics of the amorphous NiTi alloy can be mathematically described by the Johnson-MehlAvrami-Kolmogorov(JMAK) equation.NiTi SMA with a complete nanocrystalline phase is obtained in the case of annealing at 573 K and 723 K,where martensite phase transformation is suppressed due to the constraint of the grain boundaries.Crystallization of amorphous NiTi alloy at 873 K leads to the coarse-grained NiTi sample,where(001) martensite compound twin is observed at room temperature.It can be found that the martensitic twins preferentially nucleate at the grain boundary and they grow up towards the two different grains.SPD based on the local canning compression and subsequent annealing provides a new approach to obtain the nanocrystalline NiTi SMA. 展开更多
关键词 niti alloy shape memory alloy severe plastic deformation amorphization CRYSTALLIZATION
下载PDF
Dynamic recovery and dynamic recrystallization of NiTi shape memory alloy under hot compression deformation 被引量:12
9
作者 江树勇 张艳秋 赵亚楠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期140-147,共8页
Mechanical behavior of nickel?titanium shape memory alloy(NiTi SMA) under hot deformation was investigated according to the true stress—strain curves of NiTi samples under compression at the strain rates of 0.001-... Mechanical behavior of nickel?titanium shape memory alloy(NiTi SMA) under hot deformation was investigated according to the true stress—strain curves of NiTi samples under compression at the strain rates of 0.001-1 s-1 and at the temperatures of 600?1000℃.Dynamic recovery and dynamic recrystallization of NiTi SMA were systematically investigated by microstructural evolution.The influence of the strain rates,the deformation temperatures and the deformation degree on the dynamic recovery and dynamic recrystallization of NiTi SMA was obtained as well.NiTi SMA was characterized by the combination of dynamic recovery and dynamic recrystallization at 600℃ and 700℃,but the complete dynamic recrystallization occurred at other deformation temperatures.Increasing the deformation temperatures or decreasing the stain rates leads to larger equiaxed grains.The deformation degree has an important influence on the dynamic recrystallization of NiTi SMA.There exists the critical deformation degree during the dynamic recrystallization of NiTi SMA,beyond which the larger deformation degree contributes to obtaining the finer equiaxed grains. 展开更多
关键词 niti alloy shape memory alloy dynamic recovery dynamic recrystallization hot deformation
下载PDF
Influence of Ni_4Ti_3 precipitates on phase transformation of NiTi shape memory alloy 被引量:4
10
作者 江树勇 张艳秋 +3 位作者 赵亚楠 刘思维 胡励 赵成志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4063-4071,共9页
Ni Ti shape memory alloy samples were aged for 2 h at 573, 723 and 873 K, respectively. Two R-phase variants are observed in the Ni Ti samples aged at 573 and 723 K, where the orientation relationship between the two ... Ni Ti shape memory alloy samples were aged for 2 h at 573, 723 and 873 K, respectively. Two R-phase variants are observed in the Ni Ti samples aged at 573 and 723 K, where the orientation relationship between the two R-phase variants and the B2 matrix is determined. In the Ni Ti samples aged at 573 and 723 K, fine and homogeneous Ni4Ti3 precipitates are coherent with the B2 austenite matrix. The Ni4Ti3 particles precipitate in the grain interior and at the grain boundaries, where the heterogeneous Ni4Ti3 precipitates are coherent, semi-coherent and incoherent with the B2 matrix in the Ni Ti sample aged at 873 K. As for the Ni Ti sample aged at 873 K, one-stage phase transformation from B19' martensite to B2 austenite occurs on heating, but two-stage phase transformation of B2-R-B19' arises on cooling. The Ni Ti sample aged at 723 K shows two-stage phase transformation of B2-R-B19' on cooling as well, but exhibits two-stage phase transformation of B19'-R-B2 on heating. The Ni Ti sample aged at 573 K exhibits three-stage transformation on cooling due to local stress inhomogeneity and local composition inhomogeneity around the Ni4Ti3 precipitates. 展开更多
关键词 shape memory alloy niti alloy martensitic transformation heat treatment MICROSTRUCTURE
下载PDF
Plastic yielding of NiTi shape memory alloy under local canning compression 被引量:3
11
作者 江树勇 胡励 +2 位作者 赵亚楠 张艳秋 梁玉龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2905-2913,共9页
As a new attempt, local canning compression was applied in order to implement large plastic deformation of nickel-titanium shape memory alloy (NiTi SMA) at room temperature. The plastic mechanics of local canning co... As a new attempt, local canning compression was applied in order to implement large plastic deformation of nickel-titanium shape memory alloy (NiTi SMA) at room temperature. The plastic mechanics of local canning compression of NiTi SMA was analyzed according to the slab method as the well as plastic yield criterion. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) were used to study the microstructural evolution as well as deformation behavior of NiTi samples under local canning compression. Increasing the hydrostatic pressure with the increase in the outer diameters of the steel cans is responsible for suppressing the initiation and growth of the micro-cracks, which contributes to enhancing the plasticity ofNiTi SMA and avoiding the occurrence of brittle fracture. Plastic deformation of NiTi SMA under a three-dimensional compressive stress state meets von-Mises yield criterion at the true strains ranging from about 0.15 to 0.50, while in the case of larger plastic strain, von-Mises yield criterion is unable to be met since the amorphous phase arises in the deformed NiTi sample. 展开更多
关键词 niti alloy shape memory alloy yield criterion plastic deformation plastic mechanics
下载PDF
Equal channel angular extrusion of NiTi shape memory alloy tube 被引量:3
12
作者 江树勇 赵亚楠 +2 位作者 张艳秋 唐明 李春峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2021-2028,共8页
As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SM... As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube. 展开更多
关键词 niti tube shape memory alloy equal channel angular extrusion severe plastic deformation finite element method
下载PDF
Finite element simulation of ball spinning of NiTi shape memory alloy tube based on variable temperature field 被引量:2
13
作者 江树勇 张艳秋 +2 位作者 赵亚楠 唐明 李春峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期781-787,共7页
As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was sol... As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was solution treated and was used as the original tube blank for ball spinning.Based on the variable temperature field and the constitutive equation,rigid-viscoplastic finite element method(FEM) was applied in order to simulate the ball spinning of NiTi SMA tube.The temperature field,the stress field,the strain field and the load prediction were obtained by means of FEM.FEM results reveal that there is a temperature increase of about 160 ℃ in the principal deformation zone of the spun part.It can be found from the stress fields and the strain fields that the outer wall of NiTi SMA tube is easier to meet the plastic yield criterion than the inner wall,and the plastic deformation zone is caused to be in a three-dimensional compressive stress state.The radial strain and the tangential strain are characterized by the compressive strain,while the axial strain belongs to the tensile strain.The variation of spinning loads with the progression of the ball is of great importance in predicting the stable flow of the spun part. 展开更多
关键词 niti alloy niti tube shape memory alloy finite element method ball spinning
下载PDF
Fracture behavior and microstructure of as-cast NiTi shape memory alloy 被引量:2
14
作者 江树勇 张艳秋 范红涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1401-1406,共6页
The as-cast ingot of equiatomic nickel-titanium shape memory alloy (NiTi SMA) was prepared by vacuum consumable arc melting. The tensile tests and the compressive tests with respect to as-cast NiTi SMA were performe... The as-cast ingot of equiatomic nickel-titanium shape memory alloy (NiTi SMA) was prepared by vacuum consumable arc melting. The tensile tests and the compressive tests with respect to as-cast NiTi SMA were performed to study its mechanical properties of fracture. The microanalysis of as-cast NiTi SMA as well as its fractured samples was performed so as to better understand microstructure evolution and fracture behavior of NiTi SMA. Under tensile loading, the as-cast NiTi SMA shows higher plasticity and is characterized by ductile fracture at 750℃, but it demonstrates poorer plasticity and is characterized by cleavage fracture as well as transcrystalline fracture at room temperature and -100 ℃. Under compressive loading at -100 ~C, the as-cast NiTi SMA is characterized by shear fracture where the normal to the shearing fracture surface inclines about 45° to the compressive axis, and belongs to cleavage fracture where the cracks exoand via transcrvstalline fracture. 展开更多
关键词 niti altoy shape memory alloy as-cast-niti microstructural evolution fracture behavior
下载PDF
NiTi形状记忆合金的功能特性及其应用发展 被引量:3
15
作者 杨超 廖雨欣 +3 位作者 卢海洲 颜安 蔡潍锶 李鹏旭 《材料工程》 EI CAS CSCD 北大核心 2024年第2期60-77,共18页
NiTi形状记忆合金(shape memory alloys,SMAs)作为一种智能材料,具有良好的超弹性、形状记忆效应和生物相容性等功能特性,被广泛应用于航空航天、医疗器械和工程建筑等领域。其中超弹性在宏观上表现为发生较大的变形仍能恢复原形状,且... NiTi形状记忆合金(shape memory alloys,SMAs)作为一种智能材料,具有良好的超弹性、形状记忆效应和生物相容性等功能特性,被广泛应用于航空航天、医疗器械和工程建筑等领域。其中超弹性在宏观上表现为发生较大的变形仍能恢复原形状,且其远大于常见金属可恢复的弹性应变。形状记忆效应则是温度激励下奥氏体和马氏体两相的相互转变,根据宏观变形分为单程、双程和全程形状记忆效应。而NiTi SMAs的生物相容性体现在低弹性模量和低生物毒性等方面,可应用于正畸、矫正、心血管支架等医疗器件。为充分发挥NiTi SMAs的功能,研究者们不断开发NiTi SMAs相关的智能结构。本文简要综述了近年来研究和发展NiTi SMAs的不同功能特性及其对应的智能结构典型应用,详细介绍和讨论了NiTi SMAs的功能特性、关注问题和应用领域。同时,也对NiTi SMAs阻尼性能和储氢特性进行了阐述。最后,展望了NiTi SMAs在各领域应用上尚需重点关注的问题:利用增材制造技术调控微观结构实现超弹性的稳定性提升;通过建立本构模型为形状记忆效应的稳定应用提供理论指导,并进一步优化结构实现形状记忆效应的宏观放大;提高NiTi SMAs在生物环境里的耐腐蚀性和医疗应用推广。因此,推动NiTi SMAs在不同应用领域的个性化和功能定制化,尚需大量的跨学科研究。 展开更多
关键词 niti形状记忆合金 功能特性 智能结构
下载PDF
纳米晶NiTi形状记忆合金/Nb纳米线复合材料超弹应力的温度依赖性
16
作者 王涛涛 武泽园 +4 位作者 李亚鹏 廖仲尼 王永善 刘艳 唐玲 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第3期835-840,共6页
NiTi形状记忆合金因其超弹性已经得到广泛应用,然而传统NiTi合金马氏体相变的超弹应力随温度的降低而快速减小(6~7 MPa/K),显著制约了其在宽温域中的应用。本文通过熔炼、锻造及拔丝获得纳米晶NiTi/Nb丝材,然后采用透射电子显微镜、差... NiTi形状记忆合金因其超弹性已经得到广泛应用,然而传统NiTi合金马氏体相变的超弹应力随温度的降低而快速减小(6~7 MPa/K),显著制约了其在宽温域中的应用。本文通过熔炼、锻造及拔丝获得纳米晶NiTi/Nb丝材,然后采用透射电子显微镜、差示扫描量热仪及拉伸试验机分别研究丝材的显微组织、相变行为及超弹性能。结果表明:纳米晶NiTi/Nb丝材中NiTi合金的平均晶粒尺寸为14 nm,丝材在降温和升温过程中分别发生热诱发B2→R相变和R→B2相变。在328~376 K温度范围内,纳米晶NiTi/Nb丝材应力诱发B2→B19′相变超弹应力的平均值为1002 MPa,超弹应力的温度依赖性为4.1 MPa/K。 展开更多
关键词 纳米晶 niti形状记忆合金 Nb纳米线 超弹应力 温度依赖性
下载PDF
选区激光熔化成形NiTi合金工艺参数对表面粗糙度的影响规律
17
作者 王俊伟 贺定勇 +1 位作者 吴旭 王国红 《表面技术》 EI CAS CSCD 北大核心 2024年第9期200-208,共9页
目的针对选区激光熔化(SLM)制备NiTi形状记忆合金表面粗糙度难以满足实际应用要求,通过优化工艺参数(激光功率、扫描速度、扫描间距)以有效地降低表面粗糙度以及研究各工艺参数对表面粗糙度的影响规律。方法采用L16正交阵列的田口模型... 目的针对选区激光熔化(SLM)制备NiTi形状记忆合金表面粗糙度难以满足实际应用要求,通过优化工艺参数(激光功率、扫描速度、扫描间距)以有效地降低表面粗糙度以及研究各工艺参数对表面粗糙度的影响规律。方法采用L16正交阵列的田口模型设计选区激光熔化制备NiTi样品的工艺参数,通过对表面粗糙度信噪比值进行统计方法分析以及样品表面形貌的表征,研究不同工艺参数对表面粗糙度的影响程度以及影响机理,最终优化出制备低表面粗糙度的工艺参数组合。结果在激光功率为20 W和30 W时,NiTi粉末不能够充分熔化造成熔道不连续,使得样品表面起伏增大,粗糙度值最大到7.8μm;增大激光功率到40W和50W时,粉末充分熔化,样品表面形貌明显改善;在相同功率下,扫描速度从200mm/s增加到500mm/s时,样品的粗糙度值也随之增大。结论工艺参数对表面粗糙度影响的重要性顺序依次为激光功率、扫描速度、扫描间距;最终优化出的工艺参数组合为激光功率50W、扫描速度200mm/s、扫描间距0.07mm,并在该工艺参数下制备的样品表面粗糙度值为1.38μm,与模型预测的值1.43μm接近,相差仅为9.97%。 展开更多
关键词 选区激光熔化 niti形状记忆合金 田口方法 表面粗糙度 工艺优化
下载PDF
A macroscopic multi-mechanism based constitutive model for the thermo-mechanical cyclic degeneration of shape memory effect of NiTi shape memory alloy 被引量:6
18
作者 Chao Yu Guozheng Kang Qianhua Kan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第3期619-634,共16页
A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic defor... A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite and detwinned martensite , as well as the phase transitions occurring between each pair of phases (, , , , and are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases (A, , and and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model. 展开更多
关键词 niti smas Constitutive model Cyclic degeneration of shape memory effect Transformation-induced plasticity Reorientation-induced plasticity
下载PDF
Microstructure evolution and deformation behavior of as-cast NiTi shape memory alloy under compression 被引量:10
19
作者 JIANG Shu-yong ZHANG Yan-qiu 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期90-96,共7页
The as-cast ingot of equiatomic nickel-titanium shape memory alloy (SMA) was prepared via vacuum consumable arc melting. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, energy dispersi... The as-cast ingot of equiatomic nickel-titanium shape memory alloy (SMA) was prepared via vacuum consumable arc melting. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, energy dispersive X-ray (EDX) measurement and microanalysis were adopted in order to understand the microstructure evolution and deformation behavior of the as-cast NiTi SMA under compression at various strain rates and temperatures. The microstructures of as-cast NiTi SMA composed of dendritic grains and equiaxed grains are inhomogeneous and show segregation. The as-cast NiTi SMA consists of B19′ martensite, B2 austenite and Ti2Ni phase simultaneously at room temperature. The as-cast NiTi SMA is sensitive to strain rate under compression at high temperature, at which NiTi SMA is characterized by dynamic recrystallization at strain rates of 0.1 and 0.01 s-1, but by dynamic recovery at strain rate of 0.001s-1. The strain rates have little influence on the true stress—strain curves as well as microstructure of NiTi SMA at room temperature and -100 °C. 展开更多
关键词 as-cast niti microstructure evolution deformation behavior dynamic recrystallization shape memory alloy
下载PDF
Prediction of grain scale plasticity of NiTi shape memory alloy based on crystal plasticity finite element method 被引量:5
20
作者 Li HU Shu-yong JIANG +1 位作者 Lai-xin SHI Yan-qiu ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第4期775-784,共10页
Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis ba... Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis based on the obtained orientation data.Stress and strain distributions of the deformed NiTi SMA samples confirm that there exhibits a heterogeneous plastic deformation at grain scale.Statistically stored dislocation(SSD)density and geometrically necessary dislocation(GND)density were further used in order to illuminate the microstructure evolution during uniaxial compression.SSD is responsible for sustaining plastic deformation and it increases along with the increase of plastic strain.GND plays an important role in accommodating compatible deformation between individual grains and thus it is correlated with the misorientation between neighboring grains,namely,a high GND density corresponds to large misorientation between grains and a low GND density corresponds to small misorientation between grains. 展开更多
关键词 grain scale plasticity niti shape memory alloy crystal plasticity finite element method plastic deformation microstructure evolution
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部