Two near single-phase NiTiNb alloys--NisoTi4sNb2 and Ni49.5Ti46.5Nb4-are prepared and studied by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), differential scanning calorimetry...Two near single-phase NiTiNb alloys--NisoTi4sNb2 and Ni49.5Ti46.5Nb4-are prepared and studied by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC) and tensile tests in order to unearth the effects of Nb-atom solid solution in NiTi phase on the yield strength induced by self-accommodation of martensite variants. The results show that the yield strength of near single-phase NiTiNb alloys varies inversely with the amount of Nb-atoms solid-dissolved in NiTi phase. From the results out of the prior and current studies, it can be surmised that the effects of Nb content on the yield strength of NiTiNb alloys in martensite state depend on the coaction. Nb solid solution weakening mechanism and β-Nb phase composite strengthening mechanism. This inference might be a satisfactory explanation to the fact that the yield strength of (NiTi)50-0.5xNbx alloys in martensite state begins with decline and then rises when the Nb content increases.展开更多
The transformation hysteresis and stability of strain martensite in Ni_(47)Ti_(44)Nb_ alloy have been studied by means of tensile tests at various temperatures and electrical resistance measurements as well as TEM obs...The transformation hysteresis and stability of strain martensite in Ni_(47)Ti_(44)Nb_ alloy have been studied by means of tensile tests at various temperatures and electrical resistance measurements as well as TEM observations.It was shown that there is a characteristic deformation temperature and a strain range,in which the critical yield stress for stress-in- duced transformation acquires optimum matching with the yield strength of the β-Nb parti- cles.In this case,deformatian can effectively increase the transformation hysteresis,while the strain recovery ratio remains usefully high.The martensite with irreguldar fine.twin substructure and martensite containing some dislocations as well as martensite intersected by the β-Nb particles possess high stability.展开更多
基金National Natural Science Foundation of China (50971009) Science Fund for Creative Research Groups (50921003) Aviation Science Foundation of China (2009ZF51059)
文摘Two near single-phase NiTiNb alloys--NisoTi4sNb2 and Ni49.5Ti46.5Nb4-are prepared and studied by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC) and tensile tests in order to unearth the effects of Nb-atom solid solution in NiTi phase on the yield strength induced by self-accommodation of martensite variants. The results show that the yield strength of near single-phase NiTiNb alloys varies inversely with the amount of Nb-atoms solid-dissolved in NiTi phase. From the results out of the prior and current studies, it can be surmised that the effects of Nb content on the yield strength of NiTiNb alloys in martensite state depend on the coaction. Nb solid solution weakening mechanism and β-Nb phase composite strengthening mechanism. This inference might be a satisfactory explanation to the fact that the yield strength of (NiTi)50-0.5xNbx alloys in martensite state begins with decline and then rises when the Nb content increases.
文摘The transformation hysteresis and stability of strain martensite in Ni_(47)Ti_(44)Nb_ alloy have been studied by means of tensile tests at various temperatures and electrical resistance measurements as well as TEM observations.It was shown that there is a characteristic deformation temperature and a strain range,in which the critical yield stress for stress-in- duced transformation acquires optimum matching with the yield strength of the β-Nb parti- cles.In this case,deformatian can effectively increase the transformation hysteresis,while the strain recovery ratio remains usefully high.The martensite with irreguldar fine.twin substructure and martensite containing some dislocations as well as martensite intersected by the β-Nb particles possess high stability.