Spinel NiZn ferrite thin films were prepared on glass substrates by spray plating method. Adding cetyltrimethylammoniumchloride (CTAC), adsorptive energy of substrate surface increased, and smooth surface and unifor...Spinel NiZn ferrite thin films were prepared on glass substrates by spray plating method. Adding cetyltrimethylammoniumchloride (CTAC), adsorptive energy of substrate surface increased, and smooth surface and uniform columnar film structures were observed. The optimum reaction temperature up to 85℃ and pH up to 7.5 were obtained. As the solution pH value increases from 6.5 to 7.5, the film saturation magnetization increases to 36.1 and the imaginary part μ″ up to 53.2 for NiZn ferrite film at 500 MHz were achieved, and higher magnetic resonance at 508 MHz was observed. As the ferrite plate thickness is 50 μm, the attenuating characteristics for reflection loss ≤-0.8 dB can be obtained in the wide frequency ranging from 0.5 to 2.7 GHz. Theμ″ of thin film has values higher than 20 at the frequencies between 0.5 and 2 GHz, and the thin film can be applied as shielding material in GHz range.展开更多
NiZn ferrite thin fihns were performed on glass substrates of 85 ℃ by spin spray plating method. X-ray diffraction patterns of the films show that the samples have a cubic spinel structure with no extra lines corresp...NiZn ferrite thin fihns were performed on glass substrates of 85 ℃ by spin spray plating method. X-ray diffraction patterns of the films show that the samples have a cubic spinel structure with no extra lines corresponding to any other phases between 75 ℃ and 85 ℃. As the pH value of oxidizing solution increases to 8.3, the saturation magnetization increases to 3.13 × 10^5 A/m and resistivity to 127 m Ω ·cm. Film deposited at pH 7.8 has a smooth surface and definite columnar structure. The large wavy flakes were observed at pH 8.3. The high real part of complex permeability μ′ up to 36.1 and the imaginary part μ″ up to 53.2 were observed at 0.5 GHz by short microstrip line perturbation method. The μ″ of thin film has values higher than 20 at the frequencies between 0.5 GHz and 2 GHz, the film is a promising anti-noise material for high frequency applications,展开更多
Cu- and Co-substituted NiZn ferrite thin films, Ni0.4-xZn0.6CuxFe2O4 and Ni0.5Zn0.5CoxFe2-xO4 (0≤x≤0.2), are synthesized by sol-gel process. The crystallographic and magnetic properties of Cu- and Co-substituted N...Cu- and Co-substituted NiZn ferrite thin films, Ni0.4-xZn0.6CuxFe2O4 and Ni0.5Zn0.5CoxFe2-xO4 (0≤x≤0.2), are synthesized by sol-gel process. The crystallographic and magnetic properties of Cu- and Co-substituted NiZn ferrite thin films have been investigated. The lattice parameter decreases with Cu substitution and increases with Co substitution. The saturation magnetization decreases and the coereivity increases with the increase of Cu substitution. Moreover, the saturation magnetization gradually increases with the increase of Co substitution when x≤0.10, but decreases when x〉0.10. Meanwhile, the coereivity initially decreases with the increase of Co substitution when x≤0.10, but increases when x〉0.10.展开更多
文摘Spinel NiZn ferrite thin films were prepared on glass substrates by spray plating method. Adding cetyltrimethylammoniumchloride (CTAC), adsorptive energy of substrate surface increased, and smooth surface and uniform columnar film structures were observed. The optimum reaction temperature up to 85℃ and pH up to 7.5 were obtained. As the solution pH value increases from 6.5 to 7.5, the film saturation magnetization increases to 36.1 and the imaginary part μ″ up to 53.2 for NiZn ferrite film at 500 MHz were achieved, and higher magnetic resonance at 508 MHz was observed. As the ferrite plate thickness is 50 μm, the attenuating characteristics for reflection loss ≤-0.8 dB can be obtained in the wide frequency ranging from 0.5 to 2.7 GHz. Theμ″ of thin film has values higher than 20 at the frequencies between 0.5 and 2 GHz, and the thin film can be applied as shielding material in GHz range.
基金the Advanced Research Project of the General Armament De-partment of China
文摘NiZn ferrite thin fihns were performed on glass substrates of 85 ℃ by spin spray plating method. X-ray diffraction patterns of the films show that the samples have a cubic spinel structure with no extra lines corresponding to any other phases between 75 ℃ and 85 ℃. As the pH value of oxidizing solution increases to 8.3, the saturation magnetization increases to 3.13 × 10^5 A/m and resistivity to 127 m Ω ·cm. Film deposited at pH 7.8 has a smooth surface and definite columnar structure. The large wavy flakes were observed at pH 8.3. The high real part of complex permeability μ′ up to 36.1 and the imaginary part μ″ up to 53.2 were observed at 0.5 GHz by short microstrip line perturbation method. The μ″ of thin film has values higher than 20 at the frequencies between 0.5 GHz and 2 GHz, the film is a promising anti-noise material for high frequency applications,
基金supported by the Scientific Research Foundation of Chengdu University of Information Technology under Grant No.KYTZ201022
文摘Cu- and Co-substituted NiZn ferrite thin films, Ni0.4-xZn0.6CuxFe2O4 and Ni0.5Zn0.5CoxFe2-xO4 (0≤x≤0.2), are synthesized by sol-gel process. The crystallographic and magnetic properties of Cu- and Co-substituted NiZn ferrite thin films have been investigated. The lattice parameter decreases with Cu substitution and increases with Co substitution. The saturation magnetization decreases and the coereivity increases with the increase of Cu substitution. Moreover, the saturation magnetization gradually increases with the increase of Co substitution when x≤0.10, but decreases when x〉0.10. Meanwhile, the coereivity initially decreases with the increase of Co substitution when x≤0.10, but increases when x〉0.10.