Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic...Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed.展开更多
The practical application of Lithium-Sulfur batteries largely depends on highly efficient utilization and conversion of sulfur under the realistic condition of high-sulfur content and low electrolyte/sulfur ratio.Rati...The practical application of Lithium-Sulfur batteries largely depends on highly efficient utilization and conversion of sulfur under the realistic condition of high-sulfur content and low electrolyte/sulfur ratio.Rational design of heterostructure electrocatalysts with abundant active sites and strong interfacial electronic interactions is a promising but still challenging strategy for preventing shuttling of polysulfides in lithium-sulfur batteries.Herein,ultrathin nonlayered NiO/Ni_(3)S_(2)heterostructure nanosheets are developed through topochemical transformation of layered Ni(OH)_(2)templates to improve the utilization of sulfur and facilitate stable cycling of batteries.As a multifunction catalyst,NiO/Ni_(3)S_(2)not only enhances the adsorption of polysulfides and shorten the transport path of Li ions and electrons but also promotes the Li_(2)S formation and transformation,which are verified by both in-situ Raman spectroscopy and electrochemical investigations.Thus,the cell with NiO/Ni_(3)S_(2)as electrocatalyst delivers an area capacity of 4.8 mAh cm^(-2)under the high sulfur loading(6 mg cm^(-2))and low electrolyte/sulfur ratio(4.3 pL mg^(-1)).The strategy can be extended to 2D Ni foil,demonstrating its prospects in the construction of electrodes with high gravimetric/volumetric energy densities.The designed electrocatalyst of ultrathin nonlayered heterostructure will shed light on achieving high energy density lithium-sulfur batteries.展开更多
In the pursuit of stable,high performance Ni-based oxygen evolution reaction(OER)electrocatalysts,modifying the local chemical compositions or fabricating hybrid nanostructures to generate abundant interfaces for impr...In the pursuit of stable,high performance Ni-based oxygen evolution reaction(OER)electrocatalysts,modifying the local chemical compositions or fabricating hybrid nanostructures to generate abundant interfaces for improving the water oxidation activity of electrocatalysts has emerged as an effective strategy.Herein,we report the facile development of a Ni_(3)S_(2)-CeO_(2)hybrid nanostructure via an electrodeposition method.Benefiting from the strong interfacial interaction between Ni_(3)S_(2)and CeO_(2),the electron transfer is notably improved and the water oxidation activity of Ni_(3)S_(2)nanosheets is significantly enhanced.In 1.0 M KOH,the Ni_(3)S_(2)-CeO_(2)electrocatalyst achieves a current density of 20 mA cm-2 at a low overpotential of 264 mV,which is 92 mV lower than that of Ni_(3)S_(2).Moreover,Ni_(3)S_(2)-CeO_(2)exhibits superior electrochemical stability.Density functional theory calculations demonstrate that the enhanced OER electrocatalytic performance of Ni_(3)S_(2)-CeO_(2)can be ascribed to an increase in the binding strength of the reaction intermediates at the Ni_(3)S_(2)-CeO_(2)interface.展开更多
Conversion-reaction induced charge storage mechanisms of transition metal sulphides have received considerable interest in designing high-capacity electrodes for electrochemical energy storage devices.However,their lo...Conversion-reaction induced charge storage mechanisms of transition metal sulphides have received considerable interest in designing high-capacity electrodes for electrochemical energy storage devices.However,their low conductivity and structural degradation during cycling limit their applications as energy storage devices.A combination of different nickel sulphide phases tailored with carbon nanostructures is suggested to address these limitations.Herein,a facile,two-step approach is demonstrated for fabricating a hybrid electrode,consisting of trinickel disulphide(Ni_(3)S_(2))formed on a metallic Ni nanoparticle supported by vertical carbon nanotubes(VCN)backbone in the form Ni_(3)S_(2)/Ni@VCN.Ni_(3)S_(2)/Ni@VCN electrodes were tested as anode for lithium-ion batteries,and the electrode featured outstanding lithiumstorage capabilities with a high reversible capacity(1113 m Ah g^(-1) after 100 cycles at 100 m A g^(-1)),excellent long-term cycling stability(770 m Ah g^(-1) after 500 cycles at 200 m A g^(-1)),and good rate capability.The resulting electrode performance is one of the best Li-ion storage capabilities in the Ni_(3)S_(2)-type anode materials described.A unique “broccoli-like”structure of polycrystalline Ni_(3)S_(2)capped on conductive VCN backbone helps the interface storage process and boosts lithium storage performance.展开更多
Developing efficient and durable oxygen evolution reaction(OER)catalysts holds great promise for green hydrogen production via seawater electrolysis,but remains a challenge.Herein,we report a Co-doped Ni_(3)S_(2) nano...Developing efficient and durable oxygen evolution reaction(OER)catalysts holds great promise for green hydrogen production via seawater electrolysis,but remains a challenge.Herein,we report a Co-doped Ni_(3)S_(2) nanosheet array on Ni foam(Co-Ni_(3)S_(2)/NF)as a high-efficiency OER electrocatalyst for seawater.In alkaline conditions,Co-Ni_(3)S_(2)/NF requires an overpotential of only 368 mV to drive 100 mA·cm^(–2),superior to Ni_(3)S_(2)/NF(385 mV).Besides,it exhibits at least 50-h continuous electrolysis.展开更多
With the continuous depletion of traditional energy sources,the development of sustainable energy sources has become one of the important tasks today.A two-step synthesis method was employed to construct Ni_(3)S_(2)/Z...With the continuous depletion of traditional energy sources,the development of sustainable energy sources has become one of the important tasks today.A two-step synthesis method was employed to construct Ni_(3)S_(2)/ZrCoFe-LDH@NF heterostructured electrocatalysts on nickel foam(NF)in situ.X-ray diffractometer,scanning electron mi-croscope,transmission electron microscope,and X-ray electron spectroscopy were employed to characterize the Ni_(3)S_(2)/ZrCoFe-LDH@NF heterostructure,and the hydrogen-extraction reaction(HER),oxygen-extraction reaction(OER)and total hydrolysis properties of this electrocatalyst were tested in 1 mol·L^(-1)KOH electrolyte.It is shown that Ni_(3)S_(2)/ZrCoFe-LDH@NF is a lamellar stacked heterostructure with an overpotential of 330 mV and a Tafel slope of 90.9 mV·dec^(-1)at a current density of 100 mA·cm^(-2)in the OER reaction and 159.2 mV at a current density of 10 mA·cm^(-2)in the HER reaction.The Tafel slope is 96 mV·dec^(-1),and the catalyst exhibits good structural stability in the 100 h total hydrolysis stability test.The successful construction of this heterostructured electrocatalyst provides a good idea and research basis for the subsequent heterojunction and its application in electrocatalysis.展开更多
It is of great importance to design and develop electrocatalysts that are both long-lasting and efficient for seawater oxidation.Herein,a three-dimensional porous cauliflower-like Ni_(3)S_(2) foam on Ni foam(Ni_(3)S_(...It is of great importance to design and develop electrocatalysts that are both long-lasting and efficient for seawater oxidation.Herein,a three-dimensional porous cauliflower-like Ni_(3)S_(2) foam on Ni foam(Ni_(3)S_(2) foam/NF)is proposed as a high-performance electrocatalyst for the oxygen evolution reaction in alkaline seawater.The as-synthesis Ni_(3)S_(2) foam/NF achieves exceptional efficacy,achieving a current density of 100 mA·cm^(−2)at mere overpotential of 369 mV.Notably,its electrocatalytic stability extends up to 1000 h at 500 mA·cm^(−2).展开更多
The appropriate regulation of band structure is an effective strategy in constructing efficient photocatalytic systems.Present photocatalytic system mainly employs powder photocatalysts,which makes their recovery reli...The appropriate regulation of band structure is an effective strategy in constructing efficient photocatalytic systems.Present photocatalytic system mainly employs powder photocatalysts,which makes their recovery reliant on expensive separation processes and severely limits their industrial application.Herein,we constructed a novel CdS/Ni_(3)S_(2)heterostructure using free-standing and flexible nickel fiber paper as the matrix.The regulated energy band structure achieves effective electron–hole separation.The as-synthesized flexible photocatalyst exhibits considerable photocatalytic activity toward the H_(2)evolution reaction under visible-light irradiation,with an H_(2)production rate of5.63μmol·cm^(-2)·h^(-1)(14.1 mmol·g^(-1)cat·h^(-1)according to the catalyst loading content).Additionally,the otherwisewasted excited holes simultaneously drive organic transformations to yield value-added organic products,thus markedly improving the photocatalytic H_(2)evolution rate.Such a photocatalytic system is scaled up further,where a self-supported 20 cm×25 cm sample achieves a champion H_(2)production rate of 60-80μmol·h^(-1)under practical sun irradiation.This newly developed self-supported photocatalyst produces opportunities for practical solar H2production with biomass upgrading.展开更多
The exploitation of cost-efficient electrocatalysts is critical to develop the hydrogen evolution reaction(HER) for hydrogen production.Herein,Ni_(3)S_(2)/NF-x h(x=12,16 and 20,reaction time) nanocrystals in-situ grow...The exploitation of cost-efficient electrocatalysts is critical to develop the hydrogen evolution reaction(HER) for hydrogen production.Herein,Ni_(3)S_(2)/NF-x h(x=12,16 and 20,reaction time) nanocrystals in-situ grown on Ni foam(NF) were prepared via a facile hydrothermal method.The results demonstrate that the reaction time plays key roles in the morphology,the hydrogen evolution performance of the samples,and the hydrogen brittleness of NF substrate.Interestingly,the Ni_(3)S_(2)/NF-16 h displays outstanding catalytic activity for HER in alkaline solution and avoids the hydrogen brittleness of the NF skeletons simultaneously.To afford a catalytic current of20 mA·cm^(-2),Ni_(3)S_(2)/NF-16 h presents ultra-low overpotential of 48 mV for hydrogen evolution and sufficient stability for 40 h.Moreover,the density functional theory(DFT) calculations revealed that the excellent electrocatalytic HER activity of Ni_(3)S_(2) could be attributed to its exposed(015) plane,which exhibited good capability for water adsorption and dissociation in an alkaline electrolyte,leading to the optimal free energy for H^(*) adsorption.The present work offers a novel strategy to design,synthesize and develop highly efficient electrocatalysts for HER.展开更多
基金supported by the National Key Research and Development Program(No.2022YFB4202200)the Fundamental Research Funds for the Central Universities.
文摘Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed.
基金supported by the National Natural Science Foundation of China(Grant nos.62090013,61974043,and 91833303)the National Key R&D Program of China(Grant no.2019YFB2203403)+1 种基金the Projects of Science and Technology Commission of Shanghai Municipality(Grant nos.21JC1402100 and 19511120100)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘The practical application of Lithium-Sulfur batteries largely depends on highly efficient utilization and conversion of sulfur under the realistic condition of high-sulfur content and low electrolyte/sulfur ratio.Rational design of heterostructure electrocatalysts with abundant active sites and strong interfacial electronic interactions is a promising but still challenging strategy for preventing shuttling of polysulfides in lithium-sulfur batteries.Herein,ultrathin nonlayered NiO/Ni_(3)S_(2)heterostructure nanosheets are developed through topochemical transformation of layered Ni(OH)_(2)templates to improve the utilization of sulfur and facilitate stable cycling of batteries.As a multifunction catalyst,NiO/Ni_(3)S_(2)not only enhances the adsorption of polysulfides and shorten the transport path of Li ions and electrons but also promotes the Li_(2)S formation and transformation,which are verified by both in-situ Raman spectroscopy and electrochemical investigations.Thus,the cell with NiO/Ni_(3)S_(2)as electrocatalyst delivers an area capacity of 4.8 mAh cm^(-2)under the high sulfur loading(6 mg cm^(-2))and low electrolyte/sulfur ratio(4.3 pL mg^(-1)).The strategy can be extended to 2D Ni foil,demonstrating its prospects in the construction of electrodes with high gravimetric/volumetric energy densities.The designed electrocatalyst of ultrathin nonlayered heterostructure will shed light on achieving high energy density lithium-sulfur batteries.
文摘In the pursuit of stable,high performance Ni-based oxygen evolution reaction(OER)electrocatalysts,modifying the local chemical compositions or fabricating hybrid nanostructures to generate abundant interfaces for improving the water oxidation activity of electrocatalysts has emerged as an effective strategy.Herein,we report the facile development of a Ni_(3)S_(2)-CeO_(2)hybrid nanostructure via an electrodeposition method.Benefiting from the strong interfacial interaction between Ni_(3)S_(2)and CeO_(2),the electron transfer is notably improved and the water oxidation activity of Ni_(3)S_(2)nanosheets is significantly enhanced.In 1.0 M KOH,the Ni_(3)S_(2)-CeO_(2)electrocatalyst achieves a current density of 20 mA cm-2 at a low overpotential of 264 mV,which is 92 mV lower than that of Ni_(3)S_(2).Moreover,Ni_(3)S_(2)-CeO_(2)exhibits superior electrochemical stability.Density functional theory calculations demonstrate that the enhanced OER electrocatalytic performance of Ni_(3)S_(2)-CeO_(2)can be ascribed to an increase in the binding strength of the reaction intermediates at the Ni_(3)S_(2)-CeO_(2)interface.
基金funded by the PEGASUS(Plasma Enabled and Graphene Allowed Synthesis of Unique Nano-structures)projectfunded by the European Union’s Horizon-Future and Emerging Technologies(FET)research and innovation program under grant agreement No.766894+2 种基金the funding from the Slovenian Research Agency(ARRS)on project N2-0091the support of AD FUTURA,Public Scholarship,Development,Disability,and Maintenance Fund of the Republic of SloveniaNational Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2017H1D8A2031138)。
文摘Conversion-reaction induced charge storage mechanisms of transition metal sulphides have received considerable interest in designing high-capacity electrodes for electrochemical energy storage devices.However,their low conductivity and structural degradation during cycling limit their applications as energy storage devices.A combination of different nickel sulphide phases tailored with carbon nanostructures is suggested to address these limitations.Herein,a facile,two-step approach is demonstrated for fabricating a hybrid electrode,consisting of trinickel disulphide(Ni_(3)S_(2))formed on a metallic Ni nanoparticle supported by vertical carbon nanotubes(VCN)backbone in the form Ni_(3)S_(2)/Ni@VCN.Ni_(3)S_(2)/Ni@VCN electrodes were tested as anode for lithium-ion batteries,and the electrode featured outstanding lithiumstorage capabilities with a high reversible capacity(1113 m Ah g^(-1) after 100 cycles at 100 m A g^(-1)),excellent long-term cycling stability(770 m Ah g^(-1) after 500 cycles at 200 m A g^(-1)),and good rate capability.The resulting electrode performance is one of the best Li-ion storage capabilities in the Ni_(3)S_(2)-type anode materials described.A unique “broccoli-like”structure of polycrystalline Ni_(3)S_(2)capped on conductive VCN backbone helps the interface storage process and boosts lithium storage performance.
基金This research was funded by Deputy for Research&Innovation,Ministry of Education through Initiative of Institutional Funding at University of Ha’il–Saudi Arabia through project number IFP-22098.
文摘Developing efficient and durable oxygen evolution reaction(OER)catalysts holds great promise for green hydrogen production via seawater electrolysis,but remains a challenge.Herein,we report a Co-doped Ni_(3)S_(2) nanosheet array on Ni foam(Co-Ni_(3)S_(2)/NF)as a high-efficiency OER electrocatalyst for seawater.In alkaline conditions,Co-Ni_(3)S_(2)/NF requires an overpotential of only 368 mV to drive 100 mA·cm^(–2),superior to Ni_(3)S_(2)/NF(385 mV).Besides,it exhibits at least 50-h continuous electrolysis.
基金supported by the National Natural Science Foundation of China(No.51504147)the Natural Science Basic Research Program of Department of Science and Technology of Shaanxi Province(2023-JC-YB-404).
文摘With the continuous depletion of traditional energy sources,the development of sustainable energy sources has become one of the important tasks today.A two-step synthesis method was employed to construct Ni_(3)S_(2)/ZrCoFe-LDH@NF heterostructured electrocatalysts on nickel foam(NF)in situ.X-ray diffractometer,scanning electron mi-croscope,transmission electron microscope,and X-ray electron spectroscopy were employed to characterize the Ni_(3)S_(2)/ZrCoFe-LDH@NF heterostructure,and the hydrogen-extraction reaction(HER),oxygen-extraction reaction(OER)and total hydrolysis properties of this electrocatalyst were tested in 1 mol·L^(-1)KOH electrolyte.It is shown that Ni_(3)S_(2)/ZrCoFe-LDH@NF is a lamellar stacked heterostructure with an overpotential of 330 mV and a Tafel slope of 90.9 mV·dec^(-1)at a current density of 100 mA·cm^(-2)in the OER reaction and 159.2 mV at a current density of 10 mA·cm^(-2)in the HER reaction.The Tafel slope is 96 mV·dec^(-1),and the catalyst exhibits good structural stability in the 100 h total hydrolysis stability test.The successful construction of this heterostructured electrocatalyst provides a good idea and research basis for the subsequent heterojunction and its application in electrocatalysis.
基金the Deanship of Scientific Research at King Khalid University for funding support through large group Research Project under grant(No.RGP2/119/45).
文摘It is of great importance to design and develop electrocatalysts that are both long-lasting and efficient for seawater oxidation.Herein,a three-dimensional porous cauliflower-like Ni_(3)S_(2) foam on Ni foam(Ni_(3)S_(2) foam/NF)is proposed as a high-performance electrocatalyst for the oxygen evolution reaction in alkaline seawater.The as-synthesis Ni_(3)S_(2) foam/NF achieves exceptional efficacy,achieving a current density of 100 mA·cm^(−2)at mere overpotential of 369 mV.Notably,its electrocatalytic stability extends up to 1000 h at 500 mA·cm^(−2).
基金supported by the National Natural Science Foundation of China(Nos.51972147,52022037 and 52202366)Taishan Scholars Project Special Funds(No.tsqn201812083),the Innovative Team Project of Jinan(No.2021GXRC019)+1 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2019YQ20,ZR2021QE011,ZR2021JQ15 and ZR2022YQ42)the King Abdullah University of Science and Technology(KAUST)。
文摘The appropriate regulation of band structure is an effective strategy in constructing efficient photocatalytic systems.Present photocatalytic system mainly employs powder photocatalysts,which makes their recovery reliant on expensive separation processes and severely limits their industrial application.Herein,we constructed a novel CdS/Ni_(3)S_(2)heterostructure using free-standing and flexible nickel fiber paper as the matrix.The regulated energy band structure achieves effective electron–hole separation.The as-synthesized flexible photocatalyst exhibits considerable photocatalytic activity toward the H_(2)evolution reaction under visible-light irradiation,with an H_(2)production rate of5.63μmol·cm^(-2)·h^(-1)(14.1 mmol·g^(-1)cat·h^(-1)according to the catalyst loading content).Additionally,the otherwisewasted excited holes simultaneously drive organic transformations to yield value-added organic products,thus markedly improving the photocatalytic H_(2)evolution rate.Such a photocatalytic system is scaled up further,where a self-supported 20 cm×25 cm sample achieves a champion H_(2)production rate of 60-80μmol·h^(-1)under practical sun irradiation.This newly developed self-supported photocatalyst produces opportunities for practical solar H2production with biomass upgrading.
基金financially supported by the Project of Talent Recruitment of Guangdong University of Petrochemical Technology (Nos. 2019rc052 and 2019rc054)。
文摘The exploitation of cost-efficient electrocatalysts is critical to develop the hydrogen evolution reaction(HER) for hydrogen production.Herein,Ni_(3)S_(2)/NF-x h(x=12,16 and 20,reaction time) nanocrystals in-situ grown on Ni foam(NF) were prepared via a facile hydrothermal method.The results demonstrate that the reaction time plays key roles in the morphology,the hydrogen evolution performance of the samples,and the hydrogen brittleness of NF substrate.Interestingly,the Ni_(3)S_(2)/NF-16 h displays outstanding catalytic activity for HER in alkaline solution and avoids the hydrogen brittleness of the NF skeletons simultaneously.To afford a catalytic current of20 mA·cm^(-2),Ni_(3)S_(2)/NF-16 h presents ultra-low overpotential of 48 mV for hydrogen evolution and sufficient stability for 40 h.Moreover,the density functional theory(DFT) calculations revealed that the excellent electrocatalytic HER activity of Ni_(3)S_(2) could be attributed to its exposed(015) plane,which exhibited good capability for water adsorption and dissociation in an alkaline electrolyte,leading to the optimal free energy for H^(*) adsorption.The present work offers a novel strategy to design,synthesize and develop highly efficient electrocatalysts for HER.