It is known that in B (un)doped Ni 3Al polycrystals, the dependence of yield strength on grain size follows the Hall Petch relationship: σ y= σ 0+ K y d -1/2 , and the slope K y can be reduced by B doping owing to t...It is known that in B (un)doped Ni 3Al polycrystals, the dependence of yield strength on grain size follows the Hall Petch relationship: σ y= σ 0+ K y d -1/2 , and the slope K y can be reduced by B doping owing to the lowering of grain boundary resistance to slip transmission. If the intergranular cracking in polycrystalline Ni 3Al occurs from the microcavity along the grain boundaries, the effective external tensile stress for the propagation of the crack like microcavity along the grain boundaries can be deduced as: σ f= σ i+ K u d -1/2 , where K u reflects the effects of such factors as environment, strain rate, boron doping and the orientation of the grain boundary on the trend of intergranular cracking. For loaded polycrystalline Ni 3Al, it should be competitive between the intergranular cracking and slip transmission across the grain boundary. Therefore, comparing the varieties of both σ y and σ f with grain size, the dependence of ductile brittle transition on grain size, and the effects of the above factors on ductile brittle transition can be expected. The model also predicts that there exists a critical grain size for the ductile brittle transition of polycrystalline Ni 3Al alloys, and B doping can increase the critical grain size due to the reduction of the slope K y and the increase of K u. The reported experimental results verified the above model.展开更多
The embedded atom type potentials and static relaxation method combined with a steepest decent computational technique have been used to simulate the interaction between the grain boundary (GB) and dislocations in Ni_...The embedded atom type potentials and static relaxation method combined with a steepest decent computational technique have been used to simulate the interaction between the grain boundary (GB) and dislocations in Ni_3Al alloys.The focus has been placed on the energy feature of the interaction,the distortion of GB structural units,and the dislocation core structure near the GB.Im- plication has also been made on the results for the understanding of the mechanism responsible for B-enhanced ductility.展开更多
The embedded atom type potentials and static relaxation method combined with steepest gra- dient computational technique have been used to simulate the grain boundary cohesive ener- gies,the distribution of electron d...The embedded atom type potentials and static relaxation method combined with steepest gra- dient computational technique have been used to simulate the grain boundary cohesive ener- gies,the distribution of electron density and stress field in the grain boundary,region,and oth- er related problems of[100],[110]and[111]symmetric tilt grain boundaries in Ni_3Al with different grain boundary geometrical index and composition.Their relations with the segrega- tion or boron,behaviors or the grain boundary,and especially the stoichiometrical effect of B induced ductility have also been studied and discussed.展开更多
Three kinds of Al-11%Si (mass fraction) alloy samples with different processes were produced to investigate the effect of microstructures on its superplasticity. Among them, the as-ECAP sample pressed 16 passes has ul...Three kinds of Al-11%Si (mass fraction) alloy samples with different processes were produced to investigate the effect of microstructures on its superplasticity. Among them, the as-ECAP sample pressed 16 passes has ultrafine grains (300 nm) and the finest secondary particles. The ECAP-T6 sample, with ECAP 16 passes followed by T6 treatment, has fine secondary particles (3 μm) but the largest grains (8 μm). Contrarily, the T6-ECAP sample, with T6 treatment followed by ECAP 16 passes, has ultrafine grains and the large secondary particles (7 μm). The tensile testing results show that the as-ECAP sample exhibits superplasticity at high strain rate of 5.75×10-1 s-1 due to its fine secondary particles and ultrafine grains. The ECAP-T6 sample, however, does not exhibit superplasticity at the same high strain rate of 5.75×10-1 s-1 because it has relatively large secondary particles and large grains. Remarkably, the T6-ECAP sample does not have superplasticity even at the lower strain rate of 1.15×10-1 s-1, attributing to its comparatively large secondary particles. When most secondary particles are larger than 7 μm, the high strain rate superplasticity could not be obtained even if this sample has ultrafine grains.展开更多
Grain size of eolian deposits from the Loess Plateau in China has been widely used to reconstruct the history of the East Asian winter monsoon. However, the grain size of bulk samples is only partially indicative to t...Grain size of eolian deposits from the Loess Plateau in China has been widely used to reconstruct the history of the East Asian winter monsoon. However, the grain size of bulk samples is only partially indicative to the strength of the winter monsoon because post-depositional weathering processes have significantly changed the grain size of original eolian particles. Here, non-weathered loess samples were separated into eight different particle fractions, and major chemical elements were determined in order to establish a geochemical indicator of original eolian grain size. The results show that SiO2 and AI2O3 contents and the SiO2/AI2O3 ratio in different fractions vary regularly with grain size, and that a good linear relation exists between the SiO2/AI2O3 ratio and grain size for the fractions <50μm. Because Al and Si are among the most stable elements and pedogenic processes in the Loess Plateau cannot affect the SiO2/AI2O3 ratio, this index can be used to reflect the grain size of original eolian particles. Application of this index in the Weinan and Luochuan loess sections of the last climatic cycle shows that SiO2/AI2O3 is in good agreement with median grain size (Md) in the loess units. On the contrary, SiO2/AI2O3 has documented a series of fluctuations in the soil units that are not clearly indicated by the grain-size changes of bulk samples.展开更多
The superplasticity behavior of Fe-28Al, Fe-28Al-2Ti, Fe-28Al-4Ti (all composition reported in this paper are in atomic percent) alloys has been investigated by tensile testing.optical microscopy and transmission elec...The superplasticity behavior of Fe-28Al, Fe-28Al-2Ti, Fe-28Al-4Ti (all composition reported in this paper are in atomic percent) alloys has been investigated by tensile testing.optical microscopy and transmission electron mocroscopy.Tensile test were performed at 700 to 900℃ under a strain rate range of about 10-5/s to 10-2/s. Maximum strain rate sensitivity index m was found to be 0.5 and the largest elongation reached 620%. The flow activation energy was measured to be 263kJ/mol for Fe-28Al and 191kJ/ mol for Fe-28Al-2Ti, which are much lower than the creep activation energy generally observed in Fe3Al alloys. After deformation grain size became much finer from about 100 μm to 20-30μm.As combined with TEM observations, we suggested that a continuous recrystallization process took place and superplasticity may arise from this process.展开更多
文摘It is known that in B (un)doped Ni 3Al polycrystals, the dependence of yield strength on grain size follows the Hall Petch relationship: σ y= σ 0+ K y d -1/2 , and the slope K y can be reduced by B doping owing to the lowering of grain boundary resistance to slip transmission. If the intergranular cracking in polycrystalline Ni 3Al occurs from the microcavity along the grain boundaries, the effective external tensile stress for the propagation of the crack like microcavity along the grain boundaries can be deduced as: σ f= σ i+ K u d -1/2 , where K u reflects the effects of such factors as environment, strain rate, boron doping and the orientation of the grain boundary on the trend of intergranular cracking. For loaded polycrystalline Ni 3Al, it should be competitive between the intergranular cracking and slip transmission across the grain boundary. Therefore, comparing the varieties of both σ y and σ f with grain size, the dependence of ductile brittle transition on grain size, and the effects of the above factors on ductile brittle transition can be expected. The model also predicts that there exists a critical grain size for the ductile brittle transition of polycrystalline Ni 3Al alloys, and B doping can increase the critical grain size due to the reduction of the slope K y and the increase of K u. The reported experimental results verified the above model.
文摘The embedded atom type potentials and static relaxation method combined with a steepest decent computational technique have been used to simulate the interaction between the grain boundary (GB) and dislocations in Ni_3Al alloys.The focus has been placed on the energy feature of the interaction,the distortion of GB structural units,and the dislocation core structure near the GB.Im- plication has also been made on the results for the understanding of the mechanism responsible for B-enhanced ductility.
文摘The embedded atom type potentials and static relaxation method combined with steepest gra- dient computational technique have been used to simulate the grain boundary cohesive ener- gies,the distribution of electron density and stress field in the grain boundary,region,and oth- er related problems of[100],[110]and[111]symmetric tilt grain boundaries in Ni_3Al with different grain boundary geometrical index and composition.Their relations with the segrega- tion or boron,behaviors or the grain boundary,and especially the stoichiometrical effect of B induced ductility have also been studied and discussed.
文摘Three kinds of Al-11%Si (mass fraction) alloy samples with different processes were produced to investigate the effect of microstructures on its superplasticity. Among them, the as-ECAP sample pressed 16 passes has ultrafine grains (300 nm) and the finest secondary particles. The ECAP-T6 sample, with ECAP 16 passes followed by T6 treatment, has fine secondary particles (3 μm) but the largest grains (8 μm). Contrarily, the T6-ECAP sample, with T6 treatment followed by ECAP 16 passes, has ultrafine grains and the large secondary particles (7 μm). The tensile testing results show that the as-ECAP sample exhibits superplasticity at high strain rate of 5.75×10-1 s-1 due to its fine secondary particles and ultrafine grains. The ECAP-T6 sample, however, does not exhibit superplasticity at the same high strain rate of 5.75×10-1 s-1 because it has relatively large secondary particles and large grains. Remarkably, the T6-ECAP sample does not have superplasticity even at the lower strain rate of 1.15×10-1 s-1, attributing to its comparatively large secondary particles. When most secondary particles are larger than 7 μm, the high strain rate superplasticity could not be obtained even if this sample has ultrafine grains.
基金the National Basic Research Project (GrantNo. 1998040800), the National Natural Science Foundation of China (Grant Nos. 49725206, 49894170-06 and 40024202) and the Chinese Academy of Sciences (Grant No. KZCX2-108).
文摘Grain size of eolian deposits from the Loess Plateau in China has been widely used to reconstruct the history of the East Asian winter monsoon. However, the grain size of bulk samples is only partially indicative to the strength of the winter monsoon because post-depositional weathering processes have significantly changed the grain size of original eolian particles. Here, non-weathered loess samples were separated into eight different particle fractions, and major chemical elements were determined in order to establish a geochemical indicator of original eolian grain size. The results show that SiO2 and AI2O3 contents and the SiO2/AI2O3 ratio in different fractions vary regularly with grain size, and that a good linear relation exists between the SiO2/AI2O3 ratio and grain size for the fractions <50μm. Because Al and Si are among the most stable elements and pedogenic processes in the Loess Plateau cannot affect the SiO2/AI2O3 ratio, this index can be used to reflect the grain size of original eolian particles. Application of this index in the Weinan and Luochuan loess sections of the last climatic cycle shows that SiO2/AI2O3 is in good agreement with median grain size (Md) in the loess units. On the contrary, SiO2/AI2O3 has documented a series of fluctuations in the soil units that are not clearly indicated by the grain-size changes of bulk samples.
文摘The superplasticity behavior of Fe-28Al, Fe-28Al-2Ti, Fe-28Al-4Ti (all composition reported in this paper are in atomic percent) alloys has been investigated by tensile testing.optical microscopy and transmission electron mocroscopy.Tensile test were performed at 700 to 900℃ under a strain rate range of about 10-5/s to 10-2/s. Maximum strain rate sensitivity index m was found to be 0.5 and the largest elongation reached 620%. The flow activation energy was measured to be 263kJ/mol for Fe-28Al and 191kJ/ mol for Fe-28Al-2Ti, which are much lower than the creep activation energy generally observed in Fe3Al alloys. After deformation grain size became much finer from about 100 μm to 20-30μm.As combined with TEM observations, we suggested that a continuous recrystallization process took place and superplasticity may arise from this process.
基金the financial supports from the National Natural Science Foundation of China(Nos.11772332,11790292,11727803,11988102)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB22040501)the Opening Fund of State Key Laboratory of Nonlinear Mechanics,China。