The oridation resistance at 1100°C of a dirationally solidified Ni3Al base alloy IC6is substantially improved by the addition of yttriurn or yttrium and silicon. The stress rupture property under 1100°C/80MP...The oridation resistance at 1100°C of a dirationally solidified Ni3Al base alloy IC6is substantially improved by the addition of yttriurn or yttrium and silicon. The stress rupture property under 1100°C/80MPa is increased by adding proper amounts of yttrium, howevef it decreases bg adding 0.3wt% silicon and 0. 1wt% yttrium at the same time, which may be attributed to the formation of a needle like phase rich in nickel and molybdenum.展开更多
The effect of different amounts of silicon on the microstructure of the yttrium modified Ni3Al base alloy IC6 was studied with transmission electron microscope (TEM). The chemical compositions of phases formed due to ...The effect of different amounts of silicon on the microstructure of the yttrium modified Ni3Al base alloy IC6 was studied with transmission electron microscope (TEM). The chemical compositions of phases formed due to the presence of silicon and yttrium were analyzed with energy dispersive spectrum(EDS) technique of electron probe microstructural analysis (EPMA). The results showed that a bulk shape phase rich in Mo and Si was formed in the alloys with addition of 0.10-0.20wt%Si and 0.12wt%Y, and that a needle like phase named Y-NiMo was precipitated in the interdendritic area in the alloy with addition of 0.30wt%Si and 0.12wt%Y besides the formation of the bulk shape phase mentioned above. The stress rupture properties under 1100℃/80MPa and the thermal fatigue properties at 1100℃ were improved by adding 0. 12wt%Y but decreased by adding 0.10-0.30wt%Si and 0.12wt%Y. The addition of 0. 10-0.20wt%Si and 0.12wt%Y has no obvious influence on the tensile properties of alloy IC6 at room temperature (R. T.), 760, and 900℃, respectively.展开更多
An additive of Y to Ni_3Al based alloy may form a phase YNi_5 which increases in amount with the increase of Y content.It was found that the YNi_5 phase in Ni_3Al alloy could remarkably make its grains finer and its g...An additive of Y to Ni_3Al based alloy may form a phase YNi_5 which increases in amount with the increase of Y content.It was found that the YNi_5 phase in Ni_3Al alloy could remarkably make its grains finer and its grain boundaries more crooked other than straight.If the Y con- tent≥0.1 wt-%,it occurs as solid solution state and is favorable to high temperature compressive properties and oxidation resistance of the alloy.While Y≥0.3 wt-%,the forma- tion of YNi_5 is predominant in the shape of irregular strips inside Ni_3Al grains and along their grain boundaries.This seems to be quite harmful to high temperature strength,ductility and oxidation resistance of the alloy.展开更多
Research work and recent progress made toward the industrial applications of the Ni_3Al in CISRI are discussed in present paper. The development of a Ni_3Al base alloy named MX-246 hardened by carbides and fine disper...Research work and recent progress made toward the industrial applications of the Ni_3Al in CISRI are discussed in present paper. The development of a Ni_3Al base alloy named MX-246 hardened by carbides and fine dispersion of disordered γ is summaried. This alloy,with higher peak temperature of yield strength and higher strain hardening rate than alloyIC-218,has been successfully used as the material of rolling guider at elevated temperatures and in wear conditions. The Ni3Al base alloy of GH264 has been made into welding electrodes by horizontal continuous casting process, and recently successfully surfacing welded on hydraulic blades as cavitation erosion resistance material. The process of remelting Ni3Al base alloy in air was also developed. The processes of producing welding electrodes and remelting in air set the base of industrial applications of Ni3Al in welding, repairing and casting in mass production and into components of large size. Another application of the compound, manufacturing the jet engine rivets used at about 1300℃ , can be attributed to its excellent oxidation resistance and still keeping high strength up to the melting point.展开更多
文摘The oridation resistance at 1100°C of a dirationally solidified Ni3Al base alloy IC6is substantially improved by the addition of yttriurn or yttrium and silicon. The stress rupture property under 1100°C/80MPa is increased by adding proper amounts of yttrium, howevef it decreases bg adding 0.3wt% silicon and 0. 1wt% yttrium at the same time, which may be attributed to the formation of a needle like phase rich in nickel and molybdenum.
文摘The effect of different amounts of silicon on the microstructure of the yttrium modified Ni3Al base alloy IC6 was studied with transmission electron microscope (TEM). The chemical compositions of phases formed due to the presence of silicon and yttrium were analyzed with energy dispersive spectrum(EDS) technique of electron probe microstructural analysis (EPMA). The results showed that a bulk shape phase rich in Mo and Si was formed in the alloys with addition of 0.10-0.20wt%Si and 0.12wt%Y, and that a needle like phase named Y-NiMo was precipitated in the interdendritic area in the alloy with addition of 0.30wt%Si and 0.12wt%Y besides the formation of the bulk shape phase mentioned above. The stress rupture properties under 1100℃/80MPa and the thermal fatigue properties at 1100℃ were improved by adding 0. 12wt%Y but decreased by adding 0.10-0.30wt%Si and 0.12wt%Y. The addition of 0. 10-0.20wt%Si and 0.12wt%Y has no obvious influence on the tensile properties of alloy IC6 at room temperature (R. T.), 760, and 900℃, respectively.
文摘An additive of Y to Ni_3Al based alloy may form a phase YNi_5 which increases in amount with the increase of Y content.It was found that the YNi_5 phase in Ni_3Al alloy could remarkably make its grains finer and its grain boundaries more crooked other than straight.If the Y con- tent≥0.1 wt-%,it occurs as solid solution state and is favorable to high temperature compressive properties and oxidation resistance of the alloy.While Y≥0.3 wt-%,the forma- tion of YNi_5 is predominant in the shape of irregular strips inside Ni_3Al grains and along their grain boundaries.This seems to be quite harmful to high temperature strength,ductility and oxidation resistance of the alloy.
文摘Research work and recent progress made toward the industrial applications of the Ni_3Al in CISRI are discussed in present paper. The development of a Ni_3Al base alloy named MX-246 hardened by carbides and fine dispersion of disordered γ is summaried. This alloy,with higher peak temperature of yield strength and higher strain hardening rate than alloyIC-218,has been successfully used as the material of rolling guider at elevated temperatures and in wear conditions. The Ni3Al base alloy of GH264 has been made into welding electrodes by horizontal continuous casting process, and recently successfully surfacing welded on hydraulic blades as cavitation erosion resistance material. The process of remelting Ni3Al base alloy in air was also developed. The processes of producing welding electrodes and remelting in air set the base of industrial applications of Ni3Al in welding, repairing and casting in mass production and into components of large size. Another application of the compound, manufacturing the jet engine rivets used at about 1300℃ , can be attributed to its excellent oxidation resistance and still keeping high strength up to the melting point.