SeS_(2) has become a promising cathode material owing to its enhanced electrical conductivity over sulfur and higher theoretical specific capacity than selenium;however,the working Li-SeS_(2) batteries have to face th...SeS_(2) has become a promising cathode material owing to its enhanced electrical conductivity over sulfur and higher theoretical specific capacity than selenium;however,the working Li-SeS_(2) batteries have to face the practical challenges from the severe shuttling of soluble dual intermediates of polysulfide and polyselenide,especially in high-SeS_(2)-loading cathodes.Herein,a natural organic polymer,Nicandra physaloides pectin(NPP),is proposed to serve as an effective polysulfide/polyselenide captor to address the shuttling issues.Informed by theoretical calculations,NPP is competent to provide a Lewis base-based strong binding interaction with polysulfides/polyselenides via forming lithium bonds,and it can be homogeneously deposited onto a three-dimensional double-carbon conductive scaffold to finally constitute a polysulfide/polyselenide-immobilizing interlayer.Operando spectroscopy analysis validates the enhanced polysulfide/polyselenide trapping and high conversion efficiency on the constructed interlayer,hence bestowing the Li-SeS_(2) cells with ultrahigh rate capability(448 mAh g^(−1)at 10 A g^(−1)),durable cycling lifespan(≈0.037%capacity attenuation rate per cycle),and high areal capacity(>6.5 mAh cm^(−2))at high SeS_(2) loading of 15.4 mg cm^(−2).Importantly,pouch cells assembled with this interlayer exhibit excellent flexibility,decent rate capability with relatively low electrolyte-to-capacity ratio,and stable cycling life even under a low electrolyte condition,promising a low-cost,viable design protocol toward practical Li-SeS_(2) batteries.展开更多
基金by the National Key Research&Development Program of China(2018YFB0104200)the National Natural Science Foundation of China(201878192 and 51904193).
文摘SeS_(2) has become a promising cathode material owing to its enhanced electrical conductivity over sulfur and higher theoretical specific capacity than selenium;however,the working Li-SeS_(2) batteries have to face the practical challenges from the severe shuttling of soluble dual intermediates of polysulfide and polyselenide,especially in high-SeS_(2)-loading cathodes.Herein,a natural organic polymer,Nicandra physaloides pectin(NPP),is proposed to serve as an effective polysulfide/polyselenide captor to address the shuttling issues.Informed by theoretical calculations,NPP is competent to provide a Lewis base-based strong binding interaction with polysulfides/polyselenides via forming lithium bonds,and it can be homogeneously deposited onto a three-dimensional double-carbon conductive scaffold to finally constitute a polysulfide/polyselenide-immobilizing interlayer.Operando spectroscopy analysis validates the enhanced polysulfide/polyselenide trapping and high conversion efficiency on the constructed interlayer,hence bestowing the Li-SeS_(2) cells with ultrahigh rate capability(448 mAh g^(−1)at 10 A g^(−1)),durable cycling lifespan(≈0.037%capacity attenuation rate per cycle),and high areal capacity(>6.5 mAh cm^(−2))at high SeS_(2) loading of 15.4 mg cm^(−2).Importantly,pouch cells assembled with this interlayer exhibit excellent flexibility,decent rate capability with relatively low electrolyte-to-capacity ratio,and stable cycling life even under a low electrolyte condition,promising a low-cost,viable design protocol toward practical Li-SeS_(2) batteries.