期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Synthesis, Characterization, and Effects of Morphology on the Magnetic Application Base Properties of Pure Nickel Oxide (NiO) and Cobalt-Doped Nickel Oxide/Nickel Hydroxide (CoxNi1-xO/Ni(OH)2) Nanocomposites
1
作者 Ekane Peter Etape Oga Eugene Agbor +3 位作者 Beckley Victorine Namondo Zoubir Benmaamar Josepha Foba-Tendo John Ngolui Lambi 《Advances in Microbiology》 2023年第3期106-122,共17页
Nano particle (NP) morphology is one of the material properties at the origin of potential application base properties exploited in several engineering and technology domains, such as fuel cell, electrodes, catalysis,... Nano particle (NP) morphology is one of the material properties at the origin of potential application base properties exploited in several engineering and technology domains, such as fuel cell, electrodes, catalysis, sensing, electric, thermal, magnetic, and photovoltaic applications. The general properties and particle morphology of nickel oxide/Nickel hydroxide NPs can be modified by the introduction of impurity atoms or ions. Nano sized nickel oxide/nickel hydroxide nanocomposites were obtained from the thermal decomposition of single molecular precursors synthesized by a modified oxalate route using Carambola fruit juice as a precipitating agent. The compositional and morphological variations were studied by introducing cobalt as an impurity ion at different w/w% fractions (0%, 0.1%, 0.3%, 0.5%, 1%, 3%, 5.0%, 40.0% and 50.0%) into the microstructure of the nickel oxide/hydroxide. The precursors were characterized by FT-IR, while TGA/DTG analysis was carried out to decompose the precursors. The precursors decomposed at 400°C and were characterized by PXRD and SEM/TEM. The results revealed that Pure Nickel Oxide (NiO) and, Cobalt-doped Nickel Oxide/nickel hydroxide (Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) Nano composites have been synthesized and the synthesized samples have exhibited three distinct morphologies (porous face-centered cubic nano rods, rough and discontinuous Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) composite and, smooth and continuous mix spherical/cuboidal mixed morphological phase of (NiO/CoO). The morphology of the NPs varied with the introduction of the dopant atoms and with increase in the concentration of dopant atoms in the composite. Magnetic studies using vibrating sample magnetometry revealed superparamagnetic properties which correlated strongly with particle size, shape and morphology. Observed values of retention (4.50 × 10<sup>-3</sup> emu/g) and coercivity (65.321 Oe) were found for 0.5 w/w% corresponding to impregnated porous nanorods of Co-doped NiO, and retention (9.03 × 10<sup>-3</sup> emu/g) and coercivity (64.341 Oe), for X = 50.0%, corresponding to an aggregate network of a Nano spherical/cubic CoO/NiO mixed phase. Magnetic properties within this range are known to improve the magnetic memory and hardness of the magnetic materials. Therefore, the synthesized Cobalt-doped Nickel Oxide/nickel hydroxide (Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) Nano composites have potential applications in Magnetic memories and hardness of magnetic materials. 展开更多
关键词 nickel Oxide/hydroxide Doping MORPHOLOGY Magnetic Properties Carambola Fruit Juice
下载PDF
Synthesis, Characterization, and Effects of Morphology on the Magnetic Application Base Properties of Pure Nickel Oxide (NiO) and Cobalt-Doped Nickel Oxide/Nickel Hydroxide (CoxNi1-xO/Ni(OH)2) Nanocomposites
2
作者 Ekane Peter Etape Oga Eugene Agbor +3 位作者 Beckley Victorine Namondo Zoubir Benmaamar Josepha Foba-Tendo John Ngolui Lambi 《Advances in Nanoparticles》 2023年第3期106-122,共17页
Nano particle (NP) morphology is one of the material properties at the origin of potential application base properties exploited in several engineering and technology domains, such as fuel cell, electrodes, catalysis,... Nano particle (NP) morphology is one of the material properties at the origin of potential application base properties exploited in several engineering and technology domains, such as fuel cell, electrodes, catalysis, sensing, electric, thermal, magnetic, and photovoltaic applications. The general properties and particle morphology of nickel oxide/Nickel hydroxide NPs can be modified by the introduction of impurity atoms or ions. Nano sized nickel oxide/nickel hydroxide nanocomposites were obtained from the thermal decomposition of single molecular precursors synthesized by a modified oxalate route using Carambola fruit juice as a precipitating agent. The compositional and morphological variations were studied by introducing cobalt as an impurity ion at different w/w% fractions (0%, 0.1%, 0.3%, 0.5%, 1%, 3%, 5.0%, 40.0% and 50.0%) into the microstructure of the nickel oxide/hydroxide. The precursors were characterized by FT-IR, while TGA/DTG analysis was carried out to decompose the precursors. The precursors decomposed at 400°C and were characterized by PXRD and SEM/TEM. The results revealed that Pure Nickel Oxide (NiO) and, Cobalt-doped Nickel Oxide/nickel hydroxide (Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) Nano composites have been synthesized and the synthesized samples have exhibited three distinct morphologies (porous face-centered cubic nano rods, rough and discontinuous Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) composite and, smooth and continuous mix spherical/cuboidal mixed morphological phase of (NiO/CoO). The morphology of the NPs varied with the introduction of the dopant atoms and with increase in the concentration of dopant atoms in the composite. Magnetic studies using vibrating sample magnetometry revealed superparamagnetic properties which correlated strongly with particle size, shape and morphology. Observed values of retention (4.50 × 10<sup>-3</sup> emu/g) and coercivity (65.321 Oe) were found for 0.5 w/w% corresponding to impregnated porous nanorods of Co-doped NiO, and retention (9.03 × 10<sup>-3</sup> emu/g) and coercivity (64.341 Oe), for X = 50.0%, corresponding to an aggregate network of a Nano spherical/cubic CoO/NiO mixed phase. Magnetic properties within this range are known to improve the magnetic memory and hardness of the magnetic materials. Therefore, the synthesized Cobalt-doped Nickel Oxide/nickel hydroxide (Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) Nano composites have potential applications in Magnetic memories and hardness of magnetic materials. 展开更多
关键词 nickel Oxide/hydroxide Doping MORPHOLOGY Magnetic Properties Carambola Fruit Juice
下载PDF
Determination of Proton Diffusion Coefficient in Spherical Nickel Hydroxide Using Potential Step Measurement on Single Beads 被引量:1
3
作者 LiangXIAO JunTaoLU +5 位作者 PeiFangLIU LinZHUANG JiaWeiYAN RongGangHU BingWeiMAO ChangJianLIN 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第3期419-422,共4页
The Potential step measurements are carried out on single beads of nickel hydroxide and the results are interpreted with a dual structure model featuring fast and slow diffusing components. The intrinsic diffusion coe... The Potential step measurements are carried out on single beads of nickel hydroxide and the results are interpreted with a dual structure model featuring fast and slow diffusing components. The intrinsic diffusion coefficients for the two components are found to be in the order of magnitude 10-7 and 10-13~10-14 cm2s-1, respectively, with an apparent value for the slow component in the order of 10-10cm2s-1. 展开更多
关键词 nickel hydroxide proton diffusion proton vacancy diffusion coefficient betteries.
下载PDF
Synthesis of high-performance nickel hydroxide nanosheets/gadolinium doped-α-MnO_(2) composite nanorods as cathode and Fe_(3)O_(4)/GO nanospheres as anode for an all-solid-state asymmetric supercapacitor 被引量:1
4
作者 Milan Babu Poudel Han Joo Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期475-484,I0013,共11页
The wide use of manganese dioxide(MnO_(2))as an electrode in all-solid-state asymmetric supercapacitors(ASCs)remains challenging because of its low electrical conductivity.This complication can be circumvented by intr... The wide use of manganese dioxide(MnO_(2))as an electrode in all-solid-state asymmetric supercapacitors(ASCs)remains challenging because of its low electrical conductivity.This complication can be circumvented by introducing trivalent gadolinium(Gd)ions into the MnO_(2).Herein,we describe the successful hydrothermal synthesis of crystalline Gd-doped MnO_(2) nanorods with Ni(OH)_(2) nanosheets as cathode,which we combined with Fe_(3)O_(4)/GO nanospheres as anode for all-solid-state ASCs.Electrochemical tests dem on strate that Gd dopi ng sign ifica ntly affected the electrochemical activities of the MnO_(2),which was further enhanced by introducing Ni(OH)_(2).The GdMnO_(2)/Ni(OH)_(2) electrode offers sufficient surface electrochemical activity and exhibits excellent specific capacity of 121.8 mA h g^(-1),at 1A g^(-1),appealing rate performance,and ultralong lifetime stability(99.3%retention after 10,000 discharge tests).Furthermore,the GdMnO_(2)/Ni(OH)_(2)//PVA/KOH//Fe_(3)O_(4)/GO solid-state ASC device offers an impressive specific energy density(60.25 W h kg^(-1))at a high power density(2332 W kg^(-1)).This investigation thus shows its large potential in developing novel approaches to energy storage devices. 展开更多
关键词 Solid-state supercapacitor Manganese dioxide Gadolinium doping nickel hydroxide nanosheets
下载PDF
Influence of TiO_2 on the electrochemical performance of pasted typeβ-nickel hydroxide electrode in alkaline electrolyte 被引量:3
5
作者 B.Shruthi B.J.Madhu V.Bheema Raju 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期41-48,共8页
Nickel hydroxide was used as the positive electrode material in rechargeable alkaline batteries, which plays a significant role in the field of electric energy storage devices. β-nickel hydroxide(β-Ni(OH)2 ) was... Nickel hydroxide was used as the positive electrode material in rechargeable alkaline batteries, which plays a significant role in the field of electric energy storage devices. β-nickel hydroxide(β-Ni(OH)2 ) was prepared from nickel sulphate solution using potassium hydroxide as a precipitating agent. Pure β-phase of nickel hydroxide was confirmed from XRD and FT-IR studies. The effects of TiO2 additive on the β-Ni(OH)2 electrode performance are examined. The structure and property of the TiO2 added β-Ni(OH)2 were characterized by XRD, TG-DTA and SEM analysis. A pasted–type electrode is prepared using nickel hydroxide powder as the main active material on a nickel sheet as a current collector. Cyclic voltammetry and electrochemical impedance spectroscopy studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 and TiO2 added β-Ni(OH)2 electrodes in 6 M KOH electrolyte. Anodic(Epa) and cathodic(Epc)peak potentials are found to decrease after the addition of TiO 2 into β-Ni(OH)2 electrode material. Further,addition of TiO2 is found to enhance the reversibility of the electrode reaction and also increase the separation of the oxidation current peak of the active material from the oxygen evolution current. Compared with pure β-Ni(OH)2 lectrode,TiO2 added β-Ni(OH)2 electrode is found to exhibit higher proton diffusion coefficient(D) and lower charge transfer resistance. These findings suggest that the TiO2 added β-Ni(OH)2 electrode possess improved electrochemical properties and thus can be recognized as a promising candidate for the battery electrode applications. 展开更多
关键词 nickel hydroxide Electrode material Thermogravimetric analysis Electrochemical properties Impedance spectroscopy
下载PDF
The Deactivation of Nickel Hydroxide to Hypophosphite Electrooxidation on a Nickel Electrode
6
作者 Yue ZENG Min MO +3 位作者 Jian Long YI Xin Jun TANG Hui Xian WANG College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 College of Chemistry and Chemical Engineering, Tianjin University, Tianjin 300072 Department of Chemistry, Hunan Agriculture University,Changsha 410128 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第12期1483-1486,共4页
The deactivation of nickel hydroxide to the electrooxidation of hypophosphite on anickel electrode was studied by means of in situ UV-Vis subtractive reflectance spectroscopy. Theexperimental results show that when th... The deactivation of nickel hydroxide to the electrooxidation of hypophosphite on anickel electrode was studied by means of in situ UV-Vis subtractive reflectance spectroscopy. Theexperimental results show that when the potential is lower than-1.0 V (SCE), the surfacc on nickelelectrode is free of nickel hydroxide, on which hypophosphite is active. When the potential movespositively to about-0.75V, two absorbency bands around 300 nm and 550 nm, which were ascribedto the formation of α-nickel hydroxide, were observed, nickel is oxidized to α-nickel hydroxide.Severe deactivation of the surface occurs when the nickel surface is covered with nickel hydroxide,which separates the hypophosphite ion from nickel substrate. 展开更多
关键词 HYPOPHOSPHITE ELECTROOXIDATION DEACTIVATION nickel hydroxide in situ UV-Vis spectroscopy.
下载PDF
Electrochemical performance of nickel hydroxide doped with multi-wall carbon nanotubes
7
作者 李延伟 尹周澜 +3 位作者 姚金环 赵卫民 刘长久 钟胜奎 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期249-252,共4页
Nickel hydroxide doped with multi-wall carbon nanotubes(MCNTs)was synthesized by chemical coprecipitation method. The MCNTs doped nickel hydroxide was used as the electrochemical active material in the positive electr... Nickel hydroxide doped with multi-wall carbon nanotubes(MCNTs)was synthesized by chemical coprecipitation method. The MCNTs doped nickel hydroxide was used as the electrochemical active material in the positive electrodes of rechargeable alkaline batteries.The powder X-ray diffraction(XRD)analysis shows that the addition of MCNTs induces more structural defect within the crystal lattice of the nickel hydroxide.The cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS) tests demonstrate the better reaction reversibility and lower electrochemical impedance of MCNTs doped nickel hydroxide as compared with the pure nickel hydroxide.The charge/discharge tests show that MCNTs addition can improve the specific discharge capacity and increase the discharge voltage of the nickel hydroxide electrode. 展开更多
关键词 nickel hydroxide carbon nanotube Ni/MH batteries specific capacity electrochemical impedance spectroscopy
下载PDF
Voltammetric Response and Electrocatalysis of Glasy Carbon Electrode Modified with Monolayer Nickel Hydroxide
8
作者 Liu Shouqing Li Huiling +1 位作者 Jiang Mian Li Peibiao 《Wuhan University Journal of Natural Sciences》 CAS 1997年第1期90-94,共5页
The glassy carbon (GC) electrode modified with a monolayer nickel hydroxide (GC/Ni(OH) 2) was prepared by immersion of GC substrate in 1.0×10 -3 mol/L NiSO 4 solution, and then cyclic voltammetric scannin... The glassy carbon (GC) electrode modified with a monolayer nickel hydroxide (GC/Ni(OH) 2) was prepared by immersion of GC substrate in 1.0×10 -3 mol/L NiSO 4 solution, and then cyclic voltammetric scanning in 0.20 mol/L KOH. Similarly, GC/Co(OH) 2 electrode was prepared too. The experiments showed that the voltammetric behavior of GC/Ni(OH) 2 electrode in 0.20 mol/L KOH is more stable than that of GC/ Co(OH) 2. It was found that the GC/Ni(OH) 2 electrode acts as an effective electrocatalysis for the oxidation of hydrazine. 展开更多
关键词 glassy carbon modified electrode MONOLAYER nickel hydroxide cobalt hydroxide electroctalysis HYDRAZINE
下载PDF
Effect of Lu_2O_3 on Charge/discharge Performances of Spherical Nickel Hydroxide at High Temperature
9
作者 任俊霞 王小建 +2 位作者 李宇展 高学平 阎杰 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第6期732-736,共5页
Nickel-metal hydride (Ni/MH) batteries are one of promising batteries for electric vehicle applications, but at high temperature the charge efficiency of nickel electrode is very low. In order to improve the high-te... Nickel-metal hydride (Ni/MH) batteries are one of promising batteries for electric vehicle applications, but at high temperature the charge efficiency of nickel electrode is very low. In order to improve the high-temperature-efficiency of nickel electrode, spherical nickel hydroxide mixed with various ratios of Lu2O3 was used as active material of pasted nickel electrodes. The results of charge/discharge experiments, cyclic voltammetric measurements and XRD characterizations have shown that after addition of Lu2O3, the oxygen evolution overpotcntial is elevated much, the charge efficiency of nickel electrode at high temperature is greatly improved and the content of β-NiOOH phase increases in charged electrodes. In addition, the mixed ratio of Lu2O3 has different effects on high temperature performances of nickel electrode at different charge/discharge currents, 3.5 % is the optimum mixed ratio, and the action of Lu2O3 on high temperature electrochemical behaviors is more apparent when nickel electrodes are charged at small current than large current. 展开更多
关键词 spherical nickel hydroxide high temperature performances LU2O3 oxygen evolution overpotential rare earths
下载PDF
Influence of Sodium Carbonate Amount on Crystalline Phase and Structure Stability for Doping Nickel Hydroxide
10
作者 赵腾起 朱燕娟 +3 位作者 LI Wenhua FENG Zuyong ZHANG Wei JIAN Xiuwen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期552-558,共7页
Alpha nickel hydroxide has better performances than commercial beta nickel hydroxide. However, the main defect is that α-phase is difficult to synthesize and easily transformed to β-phase Ni(OH)2 upon aging in a s... Alpha nickel hydroxide has better performances than commercial beta nickel hydroxide. However, the main defect is that α-phase is difficult to synthesize and easily transformed to β-phase Ni(OH)2 upon aging in a strong alkaline solution. In this study, the Al-Co, Al-Yb, Yb-Co and Al-Yb-Co multiple doping was used respectively. By controlling the amount of sodium carbonate, the α-Ni(OH)2 was prepared by ultrasonic-assisted precipitation. And the influence of sodium carbonate on the crystalline phase and structure stability for alpha nickel hydroxide was studied. The results demonstrate that, with increasing amount, the biphase nickel hydroxide transforms to pure alpha nickel hydroxide gradually, and the structure stability is also improved. When the amount of sodium carbonate is 2 g, the sample still keeps α-Ni(OH)2 after being aged for 30 days, for Al-Yb-Co-Ni(OH)2. And when the amount is less than 2 g, the phase transformations exist in the samples with different extents. These results demonstrated that the amount of sodium carbonate is a critical factor to maintain the structural stability of α-Ni(OH)2. 展开更多
关键词 sodium carbonate nickel hydroxide crystalline structural stability multiple doping
下载PDF
Defect engineered nickel hydroxide nanosheets for advanced pseudocapacitor electrodes
11
作者 Yaohang Gu Yuxuan Zhang +5 位作者 Xuanyu Wang Ateer Bao Bo Ni Haijun Pan Xiaoyan Zhang Xiwei Qi 《Nano Research》 SCIE EI CSCD 2024年第6期5233-5242,共10页
While the past years have witnessed great achievement in pseudocapacitors,the inauguration of electrode materials of high-performance still remains a formidable challenge.Moreover,the capacity and rate capability of t... While the past years have witnessed great achievement in pseudocapacitors,the inauguration of electrode materials of high-performance still remains a formidable challenge.Moreover,the capacity and rate capability of the electrode depends largely on its electrical conductivity,which ensures fast charge transfer kinetics in both the grain bulk and grain boundaries.Here,nickel hydroxides with oxygen vacancies are facilely fabricated via a hydrothermal method.The active materials exhibit a high specific capacitance of 3250 F·g^(−1)and a high areal of capacitance of 14.98 F·cm^(−2)at 4.6 mA·cm^(−2).The asymmetric supercapacitor device based on our material delivers a high energy density of~71.6 Wh·kg^(−1)and a power density of~17,300 W·kg^(−1)and could retain~95%of their initial capacitance even after 30,000 cycles.In addition,the defect-rich hydroxides demonstrate higher electrical conductivity as well as dielectric constant,which is responsible for the superior pseudocapacitive performance.Our new scientific strategy in terms of taking the advantages of oxygen vacancies might open up new opportunities for qualified pseudocapacitive materials of overall high performances not only for nickel hydroxides but also for other metal hydroxides/oxides. 展开更多
关键词 pseudocapacitors nickel hydroxides oxygen vacancies electrical conductivity
原文传递
A critical review on nickel-based cathodes in rechargeable batteries 被引量:2
12
作者 Lifan Wang Jingyue Wang +3 位作者 Leiying Wang Mingjun Zhang Rui Wang Chun Zhan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期925-941,共17页
The 3d transition-metal nickel(Ni)-based cathodes have long been widely used in rechargeable batteries for over 100 years,from Ni-based alkaline rechargeable batteries,such as nickel-cadmium(Ni-Cd)and nickel-metal hyd... The 3d transition-metal nickel(Ni)-based cathodes have long been widely used in rechargeable batteries for over 100 years,from Ni-based alkaline rechargeable batteries,such as nickel-cadmium(Ni-Cd)and nickel-metal hydride(Ni-MH)batteries,to the Ni-rich cathode featured in lithium-ion batteries(LIBs).Ni-based alkaline batteries were first invented in the 1900s,and the well-developed Ni-MH batteries were used on a large scale in Toyota Prius vehicles in the mid-1990s.Around the same time,however,Sony Corporation commercialized the first LIBs in camcorders.After temporally fading as LiCoO_(2) dominated the cathode in LIBs,nickel oxide-based cathodes eventually found their way back to the mainstreaming battery industry.The uniqueness of Ni in batteries is that it helps to deliver high energy density and great storage capacity at a low cost.This review mainly provides a comprehensive overview of the key role of Ni-based cathodes in rechargeable batteries.After presenting the physical and chemical properties of the 3d transition-metal Ni,which make it an optimal cationic redox center in the cathode of batteries,we introduce the structure,reaction mechanism,and modification of nickel hydroxide electrode in Ni-Cd and Ni-MH rechargeable batteries.We then move on to the Ni-based layered oxide cathode in LIBs,with a focus on the structure,issues,and challenges of layered oxides,LiNiO_(2),and LiNi_(1−x−y)Co_(x)Mn_(y)O_(2).The role of Ni in the electrochemical performance and thermal stability of the Ni-rich cathode is highlighted.By bridging the“old”Ni-based batteries and the“modern”Ni-rich cathode in the LIBs,this review is committed to providing insights into the Ni-based electrochemistry and material design,which have been under research and development for over 100 years.This overview would shed new light on the development of advanced Ni-containing batteries with high energy density and long cycle life. 展开更多
关键词 nickel-based alkaline batteries nickel hydroxide electrodes lithium-ion battery Ni-rich layered oxide cathodes
下载PDF
Nanocrystalline Ni(OH)_2 Preparation by Electrolysis in an Aqueous Solution of Nickel Nitrate
13
作者 ZHANG Heng bin LI Xue yin +1 位作者 CAO Xue jing LI Shu jia 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2002年第3期334-336,共3页
Nanocrystalline Ni(OH) 2 was prepared by cathode deposition in an aqueous solution of nickel nitrate. The structure and the morphology were characterized by means of XRD and TEM. The electrode performances were exami... Nanocrystalline Ni(OH) 2 was prepared by cathode deposition in an aqueous solution of nickel nitrate. The structure and the morphology were characterized by means of XRD and TEM. The electrode performances were examined with the materials as a positive electrode in a Ni MH cell. 展开更多
关键词 Nanocrystal nickel hydroxide ELECTROLYSIS
下载PDF
Unraveling the role of NiSnPH@OOH/CC perovskite hydroxide for efficient electrocatalytic oxidation of methanol to formate
14
作者 Jing Shao Yusheng Fang +2 位作者 Xiaobing Wu Muhammad Imran Abdullah Youkun Tao 《Nano Research》 SCIE EI CSCD 2024年第4期2388-2399,共12页
The sluggish kinetics of oxygen evolution reaction(OER)is the key tailback for hydrogen production from the water electrolysis.Masking OER with thermodynamically auspicious methanol oxidation reaction(MOR)can signific... The sluggish kinetics of oxygen evolution reaction(OER)is the key tailback for hydrogen production from the water electrolysis.Masking OER with thermodynamically auspicious methanol oxidation reaction(MOR)can significantly boost the H_(2) and value-added products production.However,it is currently challenging to achieve a synergistic manipulation of product selectivity and performance for MOR electrocatalyst.Herein,we report NiSnPH@OOH/CC(CC=carbon cloth)perovskite hydroxide nanosphere as an efficient MOR electrocatalyst with high activity,stability,and selectivity towards methanol oxidation to formate.A surface amorphous layer of defect rich NiOOH was generated in operando by selective Sn leaching with stable perovskite hydroxide bulk structure,which mitigates the oxidative power and optimizes the local coordination environment of the active NiOOH sites.In situ Raman combined with electrochemical studies further confirm the key active species,NiOOH,generated in operando enhance the MOR and blocking the over oxidation of methanol to CO_(2).As a result,NiSnPH@OOH/CC effectively masks the OER and attains>99%selectivity with 100%Faradic efficiency for methanol-to-formate.The results of this study show the advances of NiSnPH@OOH/CC as an efficient electrocatalyst for MOR and also suggest its potential applications for various small organic molecules oxidation. 展开更多
关键词 perovskite hydroxide small organic molecules nickel oxy(hydroxide) value-added products methanol oxidation reaction
原文传递
Effects of Doped Elements on Electrochemical Performance of Ni(OH)_2 Materials 被引量:5
15
作者 LEE Chang-sheng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第4期452-455,共4页
High energy ball milling (HEBM) method was applied to synthesize Ni (OH)2 with different doped elements sub-stitution for Ni^2+. The morphology, structure and electrochemical behavior of prepared powders were stu... High energy ball milling (HEBM) method was applied to synthesize Ni (OH)2 with different doped elements sub-stitution for Ni^2+. The morphology, structure and electrochemical behavior of prepared powders were studied. The re-suits reveal that all the synthesized Ni(OH)2 particles were in sub-micron sizes and greatly agglomerated. Co-, Mg-,Fe- or Mn-doped Ni (OH) 2 was of β-phase with 0.400-0.500 nm crystal interlayer distance, while A1- and Zn-doped products displayed a-phase with larger crystal interlayer spaces. The electrochemical mechanisms of synthe-sized Ni(OH)2 electrodes were discussed by EIS spectra. The specific capacity of Co-doped Ni (OH)2 is 245 mA·h · g^-1, i. e. , 60 mA· h · g^-1 higher than that of Al-doped electrode, which has the highest discharging plat-form of a mid-voltage of 1.30 V. 展开更多
关键词 nickel hydroxide High energy ball milling method Metallic ion adulteration Electrochemical discharging capacity
下载PDF
Supercapacitor characteristic of La-doped Ni(OH)_2 prepared by electrodeposition 被引量:2
16
作者 Shao Guangjie Yao Yue +1 位作者 Zhang Shipin He Pei 《Rare Metals》 SCIE EI CAS CSCD 2009年第2期132-136,共5页
Samples of lanthanum-doped nickel hydroxide were prepared by electrodeposition method. The structure and electrochemical properties of the samples were studied by X-ray diffraction and a home-made open three-electrode... Samples of lanthanum-doped nickel hydroxide were prepared by electrodeposition method. The structure and electrochemical properties of the samples were studied by X-ray diffraction and a home-made open three-electrode cell system,respectively. The results show that the deposition process of Ni(OH)2 and La(OH)3 is mainly controlled by electrochemical polarization,which makes it easy to form uniform fine crystals. In addition,La(OH)3 is not a separate phase and lanthanum ions are doped into Ni(OH)2 crystal la... 展开更多
关键词 nickel hydroxide LANTHANUM DOPING SUPERCAPACITOR ELECTRODEPOSITION
下载PDF
Balancing the Activity and Selectivity of Propane Oxidative Dehydrogenation on NiOOH(001)and(010) 被引量:1
17
作者 Lisheng Li Hua Wang +2 位作者 Jinyu Han Xinli Zhu Qingfeng Ge 《Transactions of Tianjin University》 EI CAS 2020年第5期341-351,共11页
Propane oxidative dehydrogenation(ODH)is an energy-efficient approach to produce propylene.However,ODH suff ers from low propylene selectivity due to a relatively higher activation barrier for propylene formation comp... Propane oxidative dehydrogenation(ODH)is an energy-efficient approach to produce propylene.However,ODH suff ers from low propylene selectivity due to a relatively higher activation barrier for propylene formation compared with that for further oxidation.In this work,calculations based on density functional theory were performed to map out the reaction pathways of propane ODH on the surfaces(001)and(010)of nickel oxide hydroxide(NiOOH).Results show that propane is physisorbed on both surfaces and produces propylene through a two-step radical dehydrogenation process.The relatively low activation barriers of propane dehydrogenation on the NiOOH surfaces make the NiOOH-based catalysts promising for propane ODH.By contrast,the weak interaction between the allylic radical and the surface leads to a high activation barrier for further propylene oxidation.These results suggest that the catalysts based on NiOOH can be active and selective for the ODH of propane toward propylene. 展开更多
关键词 Density functional theory Oxidative dehydrogenation PROPANE nickel oxide hydroxide Two-step radical mechanism SELECTIVITY
下载PDF
Synthesis and characterization of the structural and electrochemical properties of Nd-Al codoped amorphous nickel hydroxide
18
作者 刘长久 陈世娟 李延伟 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第2期265-269,共5页
Nd-Al codoped amorphous nickel hydroxide powders were synthesized by microemulsion precipitation method combined with rapid freezing technique.The microstructure of the prepared samples was analyzed with X-ray diffrac... Nd-Al codoped amorphous nickel hydroxide powders were synthesized by microemulsion precipitation method combined with rapid freezing technique.The microstructure of the prepared samples was analyzed with X-ray diffractometer(XRD),scanning electron microscopy(SEM),and Raman spectroscopy.The electrochemical performances of the prepared samples were characterized with charge/discharge test,cyclic voltammetry,and electrochemical impedance spectra.The results showed that the codoping of Nd-Al resulted in more st... 展开更多
关键词 nickel hydroxide AMORPHOUS DOPING electrochemical performance rare earths
原文传递
Synthesis and electrochemical properties of Mn-substituted high-capacity nickel hydroxide
19
作者 Hao Lei Yang Pan +4 位作者 Rong-Gui Guo Jing Zhang Xue Han Li-Min Yu Wen-Quan Jiang 《Rare Metals》 SCIE EI CAS CSCD 2022年第6期1977-1982,共6页
Nickel hydroxide is widely used as cathode materials in nickel-metal secondary batteries.In this work,Mn-substituted nickel hydroxide samples with a special α/βmixed phase structure were synthesized by chemical co-p... Nickel hydroxide is widely used as cathode materials in nickel-metal secondary batteries.In this work,Mn-substituted nickel hydroxide samples with a special α/βmixed phase structure were synthesized by chemical co-precipitation method.The physical properties were char-acterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),differential scanning calorimetry(DSC)and field emission scanning electron microscopy(FE-SEM).The results show that the structure of the samples and the amount of intercalated anions and water molecules are highly related to the content of the Mn substituted.Their electrochemical performances were characterized by charge/discharge tests and electrochemi-cal cycle tests.The results demonstrate that the Mn-sub-stituted samples with a α/β mixed phase structure perform a much higher discharge capacity than normal β-nickel hydroxide.The specific discharge capacity reaches 330 mAh·g^(-1) after 50 cycles of charge/discharge in charging rate of 0.2C under ambient temperature.Mean-while,the samples show no capacity loss in electrochem-ical cycles,which indicates that the mixed phase nickel hydroxide maintains high structure stability. 展开更多
关键词 nickel hydroxide Cathode material nickel-metal battery Mixed phase Electrochemical performance
原文传递
Influence of gas-diffusion-layer current collector on electrochemical performance of Ni(OH)_(2) nanostructures
20
作者 Thongsuk Sichumsaeng Nutthakritta Phromviyo Santi Maensiri 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第6期1038-1047,共10页
We report the electrochemical performance of Ni(OH)_(2) on a gas diffusion layer(GDL).The Ni(OH)_(2) working electrode was successfully prepared via a simple method,and its electrochemical performance in 1 M NaOH elec... We report the electrochemical performance of Ni(OH)_(2) on a gas diffusion layer(GDL).The Ni(OH)_(2) working electrode was successfully prepared via a simple method,and its electrochemical performance in 1 M NaOH electrolyte was investigated.The electrochemical results showed that the Ni(OH)_(2)/GDL provided the maximum specific capacitance value(418.11 F·g^(−1))at 1 A·g^(−1).Furthermore,the Ni(OH)_(2) electrode delivered a high specific energy of 17.25 Wh·kg^(−1) at a specific power of 272.5 W·kg^(−1) and retained about 81%of the capacitance after 1000 cycles of galvanostatic charge–discharge(GCD)measurements.The results of scanning electron microscopy(SEM)coupled with energy-dispersive X-ray spectroscopy(EDS)revealed the occurrence of sodium deposition after long-time cycling,which caused the reduction in the specific capacitance.This study results suggest that the light-weight GDL,which can help overcome the problem of the oxide layer on metal–foam substrates,is a promising current collector to be used with Ni-based electroactive materials for energy storage applications. 展开更多
关键词 hydrothermal synthesis nickel hydroxide gas diffusion layer sodium deposition electrochemical capacitor
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部