The magnetic particles of nickel-zinc ferrite with chemical composition Ni1-xZnxFe2O4 were synthesized successfully by citrate precursor auto-combustion method using high purity nitrates and citric acid as chelating a...The magnetic particles of nickel-zinc ferrite with chemical composition Ni1-xZnxFe2O4 were synthesized successfully by citrate precursor auto-combustion method using high purity nitrates and citric acid as chelating agent. The prepared powder of nickel-zinc ferrites was sintered at 1000℃ for 1 hr to obtain good crystalline phase and was used for further study. The X-ray diffraction technique was employed to confirm the single phase formation of nickel ferrite. The X-ray diffraction pattern shows the Bragg’s peak which belongs to cubic spinel structure. The values of lattice constant, X-ray density, bulk density, and porosity were calculated. The temperature dependence of the electrical conductivity plot shows the kink, which can be attributed to ferromagnetic-paramagnetic transition. The activation energy obtained from resistivity plots in paramagnetic region is found to be more than that in ferrimagnetic region. The conduction mechanism in nickel-zinc ferrite particles has been discussed on the basis of hopping of electrons.展开更多
Zinc ferrite is the principal constituent in zinc neutral-leach residue(NLR) which is commonly treated by hot-acid leaching in electrolytic zinc plants. Reductive leaching of zinc ferrite with sphalerite concentrate...Zinc ferrite is the principal constituent in zinc neutral-leach residue(NLR) which is commonly treated by hot-acid leaching in electrolytic zinc plants. Reductive leaching of zinc ferrite with sphalerite concentrate as a reducing agent was performed. It was found that leaching of zinc ferrite in the presence of sphalerit concentrate was a viable process that effectively extracted zinc and indium and converted Fe^3+ into Fe^2+ at the same time. Reflux leaching tests by two stages were performed to achieve extractions of 98.1% for zinc and 97.5% for indium, and a Fe^2+/Fe^3+ molar ratio of 9.6 in leach solution was also obtained. The leaching behaviors of other elements, such as iron, copper and tin were also studied. The results showed that iron and copper were completely leached, whereas tin presented lower extraction values.展开更多
The traditional zinc hydro-metallurgy generates a large amount of zinc ferrite residue rich in valuable metals. The separation of iron is crucial for resource recycling of valuable metals in zinc ferrite residue. A no...The traditional zinc hydro-metallurgy generates a large amount of zinc ferrite residue rich in valuable metals. The separation of iron is crucial for resource recycling of valuable metals in zinc ferrite residue. A novel selective reduction roasting?leaching process was proposed to separate zinc and iron from zinc leaching residue which contains zinc ferrite. The thermodynamic analysis was employed to determine the predominant range of Fe3O4 and ZnO during reduction roasting process of zinc ferrite. Based on the result of thermodynamic calculation, we found thatV(CO)/V(CO+CO2) ratio is a key factor determining the phase composition in the reduction roasting product of zinc ferrite. In the range ofV(CO)/V(CO+CO2) ratio between 2.68% and 36.18%, zinc ferrite is preferentially decomposed into Fe3O4 and ZnO. Based on thermogravimetric (TG) analysis, the optimal conditions for reduction roasting of zinc ferrite are determined as follows: temperature 700?750 °C, volume fraction of CO 6% and V(CO)/V(CO+CO2) ratio 30%. Based on the above results, zinc leaching residue rich in zinc ferrite was roasted and the roasted product was leached by acid solution. It is found that zinc extraction rate in zinc leaching residue reaches up to 70% and iron extraction rate is only 18.4%. The result indicates that zinc and iron can be effectively separated from zinc leaching residue.展开更多
Fine nickel ferrite precursors NiFe2(C204)3·6H2O were obtained via co-precipitation method with low grade nickel matte as the raw material. Thermodynamic analysis of NiClz-FeC12-(NH4)2C204-H20 system for prec...Fine nickel ferrite precursors NiFe2(C204)3·6H2O were obtained via co-precipitation method with low grade nickel matte as the raw material. Thermodynamic analysis of NiClz-FeC12-(NH4)2C204-H20 system for precipitation identified that the theoretical optimum co-precipitation pH value is 2, and C2O2 has strong complexation with Ni2+ and Fe2+ ions. Based on these theoretical considerations, the effects of parameters on the precipitation rates and precursors size were investigated systematically. The results show that the optimum co-precipitation conditions are pH=2, temperature 45 ℃, 1.2 times theoretical amount of (NH4)2C204 dosage and 3% PEG400 addition. Under these conditions, the precipitation rates of Ni2+ and Fe2+ are both over 99.8%, with the precursors size of 1-2 urn. Furthermore, X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA) demonstrate that the precursors are single-phase solid solution, wherein the nickel/iron atoms are replaced by the iron/nickel atoms reciprocally.展开更多
The kinetics of carbon reduction of ZnFe2O4 in the temperature range of 550-950 °C was investigated in a microwave tank-type reactor. The mechanism of formation of ZnO and Fe3O4/FeO by the decomposition of ZnFe2O...The kinetics of carbon reduction of ZnFe2O4 in the temperature range of 550-950 °C was investigated in a microwave tank-type reactor. The mechanism of formation of ZnO and Fe3O4/FeO by the decomposition of ZnFe2O4 was detailed using the equilibrium calculations and thermodynamics analysis by HSC chemistry software 6.0. In addition, the effects of decomposition temperature, the C/ZnFe2O4 ratio, the particle size and the microwave power were assessed on the kinetics of decomposition. Zn recovery as high as 97.93%could be achieved at a decomposition temperature of 750 °C with C/ZnFe2O4 ratio of 1:3, particle size of 61-74 μm and microwave power of 1200 W. The kinetics of decomposition was tested with different kinetic models and carbon gasification control mechanism was identified to be the appropriate mechanism. The activation energy for the carbon gasification reaction was estimated to be 38.21 kJ/mol.展开更多
Magnetic nano zinc ferrite fliuds were synthesized using an improved liquid phase chemical method, which would be used to replace tradditional iron oxides magnetic material. A novel copolymer (PLAA) with D, L-lacti...Magnetic nano zinc ferrite fliuds were synthesized using an improved liquid phase chemical method, which would be used to replace tradditional iron oxides magnetic material. A novel copolymer (PLAA) with D, L-lactide (D, L-LA) and alanine was synthesized using stannous octoate as initiator. Magnetic polymer microspheres were fabricated with nano zinc ferrite fluid coated with alanine modified poly lactide. These as-prepared zinc ferrite fluids, modified poly lactide and magnetic composites, were characterized with X-ray diffraction diffractometer, FT-IR spectrometer, nuclear magnetic resonance spectrometer, scanning electron microscope, transmission electron microscope, vibrating sample magnetometer, and thermogravimetric analyzer. The results demonstrate that the as-prepared zinc ferrite is spinel type of ZnFe2O4 nano crystals with particle size of 20-45 nm and magnetization of 32×10^-3 A.m2. Alanine is copolymerized with lactide, and the prepared composite magnetic microsphere is coated with the modified polylactide, with mass fraction of 45.5% of PLA, particle size ranging from 80-300 nm, and magnetization of 10.6×10^-3 A·m^2, which suggests ZnFe2O4 enjoys a stable magnetization after being coated by polymer.展开更多
A novel method for recovering zinc from zinc ferrite by reduction roasting–ammonia leaching was studied in this paper. The reduction thermodynamic of zinc ferrite by CO was analyzed. The effects of roasting parameter...A novel method for recovering zinc from zinc ferrite by reduction roasting–ammonia leaching was studied in this paper. The reduction thermodynamic of zinc ferrite by CO was analyzed. The effects of roasting parameters on the phase transformation and conversion rate of zinc ferrite, and the leaching behavior of zinc from the reductive roasted samples by ammonia leaching, were experimentally investigated. The mineralogical phase compositions and chemical compositions of the samples were characterized by X-ray diffraction and chemical titration methods, respectively. The results showed that most of the zinc ferrite was transformed to zinc oxide and magnetite after weak reduction roasting. 86.43% of the zinc ferrite was transformed to zinc oxide under the optimum conditions: CO partial pressure of 25%, roasting temperature of 750°C, and roasting duration of 45 min. Finally, under the optimal leaching conditions, 78.12% of zinc was leached into the solution from the roasted zinc ferrite while all iron-bearing materials were kept in the leaching residue. The leaching conditions are listed as follows: leaching duration of 90 min,ammonia solution with 6 mol/L concentration, leaching temperature of 50°C, solid-to-liquid ratio of 40 g/L, and stirring speed of 200 r/min.展开更多
Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from ...Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from coal gasifier gas to very low levels. In this paper, zinc ferrites prepared by co-precipitation were identified as a novel coal gas desulfurization sorbent at high temperature. Preparation of zinc ferrite and effects of binders on pore volume, strength and desulfurization efficiency of zinc ferrite desulfurizer were studied. Moreover, the behavior of zinc ferrite sorbent during desulfurization and regeneration under the temperature range of 350-400 ℃ are investigated. Effects of binders on the pore volume, mechanical strength and desulfurization efficiency of zinc ferrite sorbents indicated that the addition of kaolinite to zinc ferrite desulfurizer seems to be superior to other binders under the experimental conditions.展开更多
A magnetically separable photocatalyst TiO2/SiO2/NiFe2O4 (TSN) with a typical ferromagnetic hysteresis was prepared by a liquid catalytic phase transfer method. When the intensity of applied magnetic field weakened ...A magnetically separable photocatalyst TiO2/SiO2/NiFe2O4 (TSN) with a typical ferromagnetic hysteresis was prepared by a liquid catalytic phase transfer method. When the intensity of applied magnetic field weakened to zero, the remnant magnetism of the prepared photocatalyst faded to zero. The photocatalytst can be separated from water when an external magnetic field is added and redispersed into aqueous solution after the external magnetic field is eliminated, that makes the photocatalysts promising for wastewater treatment. Transmission electron microscope (TEM) and X-ray diffractometer (XRD) were used to characterize the structure of the photocatalyst indicating that the magnetic SiOffNiFe204 (SN) particle was compactly enveloped by P-25 titania and Tit2 shell was formed. The magnetic composite showed high photocatalytic activity for the degradation of methyl orange in water. A thin SiO2 layer between NiFe2O4 and TiO2 shell prevented effectively the leakage of charges from TiO2 particles to NiFe2O4, which gave rise to the increase in photocatalytic activity. Moreover, the experiment on recycled use of TSN demonstrated a good repeatability of the photocatalytic activity.展开更多
Nanocrystalline nickel ferrites with substitution of Fe3+ by rare-earth La3+, according to the formula NiLaxFe2-xO4 (with x=0, 0.05, 0.1 and 0.15), were prepared by polyacrylamide gel method. Influences of the amount ...Nanocrystalline nickel ferrites with substitution of Fe3+ by rare-earth La3+, according to the formula NiLaxFe2-xO4 (with x=0, 0.05, 0.1 and 0.15), were prepared by polyacrylamide gel method. Influences of the amount of La3+ substitution on the structure and electromagnetic properties of NiLaxFe2-xO4 compounds were systematically investigated by DSC-TG, XRD, TEM and wave-guide method. XRD results indicated that the pure spinel-type crystal structure of the NiLaxFe2-xO4 (x=0 and 0.05) was obtained at 500 ℃. TEM results showed that the average particle sizes of NiFe2O4 and NiLa0.1Fe1.9O4 particles were about 10 and 15 nm, respectively. The complex permittivity and complex permeability was measured in the frequency range of 8.2~12.4 GHz. The results revealed that the nanocrystalline NiLaxFe2-xO4 had both dielectric loss and magnetic loss in the frequency range of 8.2~12.4 GHz. The tgδε and tgδm of NiLaxFe2-xO4 (with x=0 and 0.05) decreased with the increase of La3+ ions content, and some strong resonance peaks of the tgδε and tgδm of NiLaxFe2-xO4 (with x=0.1 and 0.15) appeared because of the secondary phases (LaFeO3) and more lattice defects.展开更多
Li-Zn mixed ferrites with composition formula ZnxLi0.5-x/2Fe2.5-x/2O4 (0.2≤x≤0.8) were prepared by the usual ceramic method in 1000~1150℃. The effects of Zn substitution and sintering temperature on the formation, ...Li-Zn mixed ferrites with composition formula ZnxLi0.5-x/2Fe2.5-x/2O4 (0.2≤x≤0.8) were prepared by the usual ceramic method in 1000~1150℃. The effects of Zn substitution and sintering temperature on the formation, densification, microstructure and a.c. electrical conductivity have been studied. Under the effect of changing the firing temperature and Zn content, high sintered Li-Zn ferrite bodies are achieved. More fine structure bodies having high electrical resistance are obtained at high Zn content展开更多
Nanostructured ZnFe2O4 was synthesized by the heat treatment of a mechanically activated mixture of ZnO/α-Fe2O3.X-ray diffraction(XRD)and differential thermal analysis(DTA)results demonstrated that,after 5 h of the m...Nanostructured ZnFe2O4 was synthesized by the heat treatment of a mechanically activated mixture of ZnO/α-Fe2O3.X-ray diffraction(XRD)and differential thermal analysis(DTA)results demonstrated that,after 5 h of the mechanical activation of the mixture,ZnFe2O4 was formed by heat treatment at 750°C for 2 h.To improve the characteristics of ZnFe2O4 for adsorption applications,the chemical activation process was performed.The 2 h chemical activation with 1 mol·L?1 HNO3 and co-precipitation of 52%?57%dissolved ZnFe2O4 led to an increase in the saturated magnetization from 2.0 to 7.5 emu·g?1 and in the specific surface area from 5 to 198 m2·g?1.In addition,the observed particle size reduction of chemically activated ZnFe2O4 in field emission scanning electron microscopy(FESEM)micrographs was in agreement with the specific surface area increase.These improvements in ZnFe2O4 characteristics considerably affected the adsorption performance of this adsorbent.Adsorption results revealed that mechano-thermally synthesized ZnFe2O4 had the maximum arsenic adsorption of 38%with the adsorption capacity of 0.995 mg·g?1 in a 130 mg·L?1 solution of As(V)after 30 min of agitation.However,chemically activated ZnFe2O4 showed the maximum arsenic adsorption of approximately 99%with the adsorption capacity of 21.460 mg·g?1 under the same conditions.These results showed that the weak adsorption performance of mechano-thermally synthesized ZnFe2O4 was improved by the chemical activation process.展开更多
Nano domain Al substituted Zinc ferrite was prepared by chemical route using Ethylene Diamine as ligand.High purity precursors nitrate salts of Zinc,Fe(3+),Al(3+)were utilized along with citric acid which acts as both...Nano domain Al substituted Zinc ferrite was prepared by chemical route using Ethylene Diamine as ligand.High purity precursors nitrate salts of Zinc,Fe(3+),Al(3+)were utilized along with citric acid which acts as both fuel and complexing agent.Two different molar ratios of Zn(2+):(Fe3+):Al(3+)is 1:1.5:0.5 and 1:1.25:0.75.After ensuring proper mix of the solution Ethylene diamine was added dropwise to form a gel like mass with proper pH control.Before annealing,thermal analysis was carried to determine the crystallization/phase transition zone.Drying was carried in several stages.Initially,gel like mass was obtained after drying at 40°C while pH was about 7.Drying of gel was carried in oil bath at about 90°C and powdered mass obtained was grinded followed by auto combustion at 150°C for 60 minutes before annealing at 150°C,350°C,650°C,950°C for 2 hours to ensure the phase formation.Crystallite size,lattice strain and lattice parameters were studied from XRD analysis.展开更多
The structures of the Mn-Zn ferrites synthesized under different sintering conditions by the sol-gel method were investigated by the X-ray diffraction (XRD) and the scanning electron microscopy (SEM) with focus on...The structures of the Mn-Zn ferrites synthesized under different sintering conditions by the sol-gel method were investigated by the X-ray diffraction (XRD) and the scanning electron microscopy (SEM) with focus on two factors: the pre-sintering treatment and the calcining time. The results show that the sintering conditions have significant effects on the structures and the particle size of the Mn-Zn ferrites. Compared with the products without pre-sintering, those pre-sintered at 500℃ have a single phase and no diffraction peaks of Fe2O3 that could be found. The effects of the pre-sintering temperature on the structures of the ferrites were also studied. As a result, 500℃ proves to be the favorite in the pre-sintering treatment. The XRD patterns of the ferrites calcined at 1 200℃ for 6 h will present diffraction peaks of pure crystallization of spinel phase while those for 2 h or 4 h will show peaks of Fe2O3. The SEM also bears witness to well-grown grains of pure Mn-Zn ferrites if calcined for 6 hours.展开更多
Spinel zinc ferrites ZnFe2O4, prepared by co-precipitation method using the zinc nitrate Zn(NO3)2·6H2O and ferric nitrate Fe(NO3)3·2H2O as the raw materials, were characterized by the thermo gravimetric ...Spinel zinc ferrites ZnFe2O4, prepared by co-precipitation method using the zinc nitrate Zn(NO3)2·6H2O and ferric nitrate Fe(NO3)3·2H2O as the raw materials, were characterized by the thermo gravimetric analysis (TG) and differential scanning calorimeter (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The influence of synthesis conditions, such as Zn/Fe molar ratio, pH value, the sintering temperature and time, on the microstructures was detailedly investigated. The relationships between the microstructures and the synthesis conditions were discussed. The results show that the pure spinel zinc ferrites ZnFe2O4 are formed when the Zn/Fe molar ratio is 1.05∶2 at pH=8.5 or Zn/Fe molar ratio is 1∶2 at Ph=9-10, and the precursors are sintered at 1100 ℃ for 4 h. Especially no other phases are observed when the Zn/Fe molar ratio is 1∶2 at pH=10 and the precursor is sintered above 700 ℃ for 4 h. The higher sintering temperature and longer sintering time contribute to grain growth.展开更多
A combustion synthesis method was adapted for the efficient preparation ofpure zinc ferrite particles (ZnFe_2O_4). It is based on the exothermic reaction of the correspondingmetal nitrates with a reducing agent, to pr...A combustion synthesis method was adapted for the efficient preparation ofpure zinc ferrite particles (ZnFe_2O_4). It is based on the exothermic reaction of the correspondingmetal nitrates with a reducing agent, to produce extremely fine-grained ashes that readily convertinto pure ZnFe_2O_4 with treating thermally. The composition and microstructure of the so-obtainedsamples were studied by XRD (X-ray powder diffraction), TEM (Transmission Electron Microscopy) andAFM (Atomic Force Microscopy). These results showed that the range of particle size of ZnFe_2O_4 isabout 15-25 nm. Photocatalytic activities of nanometer ZnFe_2O_4 were also evaluated by degradationof the curcumin solution.展开更多
1,8-Dioxo-octahydroxanthenes (4a-4f) and 1,8-dioxohexahydroacridines (5a-5c) were synthesized by novel, simple and eco-friendly method with higher yields in the presence of magnetically separable nano nickel-cobalt fe...1,8-Dioxo-octahydroxanthenes (4a-4f) and 1,8-dioxohexahydroacridines (5a-5c) were synthesized by novel, simple and eco-friendly method with higher yields in the presence of magnetically separable nano nickel-cobalt ferrite catalyst (Ni0.5Co0.5Fe2O4). The former, 1,8-dioxo-octahydroxanthenes have been synthesized from dimedone and different aromatic aldehydes, while the latter from this mixture are along with ammonium acetate. The main advantage of this method is that the nano catalyst can be reused up to five reaction cycles without losing the catalytic activity.展开更多
In this paper, immobilized laccase enzyme on nano zinc ferrite was used in order to decolorize disperse dyes from single and binary systems. In this case, disperse dyes such as Disperse red 60 (DR60), Disperse blue 56...In this paper, immobilized laccase enzyme on nano zinc ferrite was used in order to decolorize disperse dyes from single and binary systems. In this case, disperse dyes such as Disperse red 60 (DR60), Disperse blue 56 (DB56) and Disperse yellow 54 (DY54) were selected as model dyes. Several parameters such as enzyme concentration, pH and dye concentration and their effect on decolorization of dyes from single and binary systems were studied. According to the experimental results, the optimized immobilized laccase enzyme concentration, reaction time and pH for decolorization of DR60, DB56 and DY54 from single and binary systems were 500 mg/L (for DR60 and DY54) and 400 mg/L (for DB56), 20 min and 3, respectively. Moreover, Dye decolorization kinetics followed Michaelis-Menten Model. Finally, the results showed that enzymatic process using immobilized laccase enzyme on nano zinc ferrite was effective method to decolorize disperse dyes from single and binary systems.展开更多
A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia....A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia. These in- clude (1) Versatic 10/CLXS0 system for the separation of Ni from Ca in sulphate solutions, (2) Versatic 10/4PC system for the separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (3) Cyanex 471X/HRJ-4277 system for the separation of Zn from Cd in sulphate solutions, (4) Versatic 10/LIX63 system for the separation of Co from Mn/Mg/Ca in sulphate solutions, (5) Versatic 10/LIX63/TBP system for separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (6) Versatic 10/LIX63 system for the separation of cobalt from nickel in sulphate solutions by difference in kinetics, (7) Cyanex 272/LIX84 system for the separation of Cu/Fe/Zn from Ni/Co in sulphate solutions, (8) Versatic 10/LIX63fFBP system to recover Cu/Ni from strong chloride solutions, and [9) Versatic 10/LIX63 system to separate Cu from Fe in strong chloride solutions. The synergistic effect on metal separation and efficiency is presented and possible industrial applications are demonstrated. The chemical stability of selected SSX systems is also reported.展开更多
文摘The magnetic particles of nickel-zinc ferrite with chemical composition Ni1-xZnxFe2O4 were synthesized successfully by citrate precursor auto-combustion method using high purity nitrates and citric acid as chelating agent. The prepared powder of nickel-zinc ferrites was sintered at 1000℃ for 1 hr to obtain good crystalline phase and was used for further study. The X-ray diffraction technique was employed to confirm the single phase formation of nickel ferrite. The X-ray diffraction pattern shows the Bragg’s peak which belongs to cubic spinel structure. The values of lattice constant, X-ray density, bulk density, and porosity were calculated. The temperature dependence of the electrical conductivity plot shows the kink, which can be attributed to ferromagnetic-paramagnetic transition. The activation energy obtained from resistivity plots in paramagnetic region is found to be more than that in ferrimagnetic region. The conduction mechanism in nickel-zinc ferrite particles has been discussed on the basis of hopping of electrons.
基金Project(2014CB643404)supported by the National Basic Research Program of ChinaProjects(51564030,51474117,51304093,51364022)supported by the National Natural Science Foundation of China+1 种基金Project(0120150070)supported by Yunnan Applied Basic Reach Project,ChinaProject(ZD2014003)supported by the Education Department of Yunnan Province,China
文摘Zinc ferrite is the principal constituent in zinc neutral-leach residue(NLR) which is commonly treated by hot-acid leaching in electrolytic zinc plants. Reductive leaching of zinc ferrite with sphalerite concentrate as a reducing agent was performed. It was found that leaching of zinc ferrite in the presence of sphalerit concentrate was a viable process that effectively extracted zinc and indium and converted Fe^3+ into Fe^2+ at the same time. Reflux leaching tests by two stages were performed to achieve extractions of 98.1% for zinc and 97.5% for indium, and a Fe^2+/Fe^3+ molar ratio of 9.6 in leach solution was also obtained. The leaching behaviors of other elements, such as iron, copper and tin were also studied. The results showed that iron and copper were completely leached, whereas tin presented lower extraction values.
基金Project(2011AA061001)supported by the National High-tech Research and Development Program of ChinaProject(2014FJ1011)supported by the Major Science and Technology Project of Hunan Province,China
文摘The traditional zinc hydro-metallurgy generates a large amount of zinc ferrite residue rich in valuable metals. The separation of iron is crucial for resource recycling of valuable metals in zinc ferrite residue. A novel selective reduction roasting?leaching process was proposed to separate zinc and iron from zinc leaching residue which contains zinc ferrite. The thermodynamic analysis was employed to determine the predominant range of Fe3O4 and ZnO during reduction roasting process of zinc ferrite. Based on the result of thermodynamic calculation, we found thatV(CO)/V(CO+CO2) ratio is a key factor determining the phase composition in the reduction roasting product of zinc ferrite. In the range ofV(CO)/V(CO+CO2) ratio between 2.68% and 36.18%, zinc ferrite is preferentially decomposed into Fe3O4 and ZnO. Based on thermogravimetric (TG) analysis, the optimal conditions for reduction roasting of zinc ferrite are determined as follows: temperature 700?750 °C, volume fraction of CO 6% and V(CO)/V(CO+CO2) ratio 30%. Based on the above results, zinc leaching residue rich in zinc ferrite was roasted and the roasted product was leached by acid solution. It is found that zinc extraction rate in zinc leaching residue reaches up to 70% and iron extraction rate is only 18.4%. The result indicates that zinc and iron can be effectively separated from zinc leaching residue.
基金Project(2012BAB10B04) supported by National Key Technology R&D Program of ChinaProject supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Fine nickel ferrite precursors NiFe2(C204)3·6H2O were obtained via co-precipitation method with low grade nickel matte as the raw material. Thermodynamic analysis of NiClz-FeC12-(NH4)2C204-H20 system for precipitation identified that the theoretical optimum co-precipitation pH value is 2, and C2O2 has strong complexation with Ni2+ and Fe2+ ions. Based on these theoretical considerations, the effects of parameters on the precipitation rates and precursors size were investigated systematically. The results show that the optimum co-precipitation conditions are pH=2, temperature 45 ℃, 1.2 times theoretical amount of (NH4)2C204 dosage and 3% PEG400 addition. Under these conditions, the precipitation rates of Ni2+ and Fe2+ are both over 99.8%, with the precursors size of 1-2 urn. Furthermore, X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA) demonstrate that the precursors are single-phase solid solution, wherein the nickel/iron atoms are replaced by the iron/nickel atoms reciprocally.
基金Projects (51004059,E041601) supported by the National Natural Science Foundation of ChinaProject (14051157) supported by Natural Science Foundation of Yunnan Province
文摘The kinetics of carbon reduction of ZnFe2O4 in the temperature range of 550-950 °C was investigated in a microwave tank-type reactor. The mechanism of formation of ZnO and Fe3O4/FeO by the decomposition of ZnFe2O4 was detailed using the equilibrium calculations and thermodynamics analysis by HSC chemistry software 6.0. In addition, the effects of decomposition temperature, the C/ZnFe2O4 ratio, the particle size and the microwave power were assessed on the kinetics of decomposition. Zn recovery as high as 97.93%could be achieved at a decomposition temperature of 750 °C with C/ZnFe2O4 ratio of 1:3, particle size of 61-74 μm and microwave power of 1200 W. The kinetics of decomposition was tested with different kinetic models and carbon gasification control mechanism was identified to be the appropriate mechanism. The activation energy for the carbon gasification reaction was estimated to be 38.21 kJ/mol.
基金Project (21107032) supported by the National Natural Science Foundation of ChinaProjects (Y406469,Y4110606) supported by Natural Science Foundation of Zhejiang Province, China+1 种基金Projects (2008AY2018,2011AY1048-5,2011AY1030) supported by the Science Foundation of Jiaxing Science and Technology Bureau,ChinaProject (2009C21003) supported by Science and Technology Department of Zhejiang Province,China
文摘Magnetic nano zinc ferrite fliuds were synthesized using an improved liquid phase chemical method, which would be used to replace tradditional iron oxides magnetic material. A novel copolymer (PLAA) with D, L-lactide (D, L-LA) and alanine was synthesized using stannous octoate as initiator. Magnetic polymer microspheres were fabricated with nano zinc ferrite fluid coated with alanine modified poly lactide. These as-prepared zinc ferrite fluids, modified poly lactide and magnetic composites, were characterized with X-ray diffraction diffractometer, FT-IR spectrometer, nuclear magnetic resonance spectrometer, scanning electron microscope, transmission electron microscope, vibrating sample magnetometer, and thermogravimetric analyzer. The results demonstrate that the as-prepared zinc ferrite is spinel type of ZnFe2O4 nano crystals with particle size of 20-45 nm and magnetization of 32×10^-3 A.m2. Alanine is copolymerized with lactide, and the prepared composite magnetic microsphere is coated with the modified polylactide, with mass fraction of 45.5% of PLA, particle size ranging from 80-300 nm, and magnetization of 10.6×10^-3 A·m^2, which suggests ZnFe2O4 enjoys a stable magnetization after being coated by polymer.
基金financially supported by the National Key Basic Research and Development Program of China (No.2014CB643403)
文摘A novel method for recovering zinc from zinc ferrite by reduction roasting–ammonia leaching was studied in this paper. The reduction thermodynamic of zinc ferrite by CO was analyzed. The effects of roasting parameters on the phase transformation and conversion rate of zinc ferrite, and the leaching behavior of zinc from the reductive roasted samples by ammonia leaching, were experimentally investigated. The mineralogical phase compositions and chemical compositions of the samples were characterized by X-ray diffraction and chemical titration methods, respectively. The results showed that most of the zinc ferrite was transformed to zinc oxide and magnetite after weak reduction roasting. 86.43% of the zinc ferrite was transformed to zinc oxide under the optimum conditions: CO partial pressure of 25%, roasting temperature of 750°C, and roasting duration of 45 min. Finally, under the optimal leaching conditions, 78.12% of zinc was leached into the solution from the roasted zinc ferrite while all iron-bearing materials were kept in the leaching residue. The leaching conditions are listed as follows: leaching duration of 90 min,ammonia solution with 6 mol/L concentration, leaching temperature of 50°C, solid-to-liquid ratio of 40 g/L, and stirring speed of 200 r/min.
基金the Ministry of Science and Technology of China under the Grant No. G2005CB221203the Natural Science Foundation of China under Contract No. 20576087.
文摘Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from coal gasifier gas to very low levels. In this paper, zinc ferrites prepared by co-precipitation were identified as a novel coal gas desulfurization sorbent at high temperature. Preparation of zinc ferrite and effects of binders on pore volume, strength and desulfurization efficiency of zinc ferrite desulfurizer were studied. Moreover, the behavior of zinc ferrite sorbent during desulfurization and regeneration under the temperature range of 350-400 ℃ are investigated. Effects of binders on the pore volume, mechanical strength and desulfurization efficiency of zinc ferrite sorbents indicated that the addition of kaolinite to zinc ferrite desulfurizer seems to be superior to other binders under the experimental conditions.
基金Supported by Shanghai Nano Technology Special Program (No.0452nm017).
文摘A magnetically separable photocatalyst TiO2/SiO2/NiFe2O4 (TSN) with a typical ferromagnetic hysteresis was prepared by a liquid catalytic phase transfer method. When the intensity of applied magnetic field weakened to zero, the remnant magnetism of the prepared photocatalyst faded to zero. The photocatalytst can be separated from water when an external magnetic field is added and redispersed into aqueous solution after the external magnetic field is eliminated, that makes the photocatalysts promising for wastewater treatment. Transmission electron microscope (TEM) and X-ray diffractometer (XRD) were used to characterize the structure of the photocatalyst indicating that the magnetic SiOffNiFe204 (SN) particle was compactly enveloped by P-25 titania and Tit2 shell was formed. The magnetic composite showed high photocatalytic activity for the degradation of methyl orange in water. A thin SiO2 layer between NiFe2O4 and TiO2 shell prevented effectively the leakage of charges from TiO2 particles to NiFe2O4, which gave rise to the increase in photocatalytic activity. Moreover, the experiment on recycled use of TSN demonstrated a good repeatability of the photocatalytic activity.
基金General Armament Department of the Chinese People's Liberation Army (42001080204)the Natural Science Foundation of Liaoning ,China (2040189)
文摘Nanocrystalline nickel ferrites with substitution of Fe3+ by rare-earth La3+, according to the formula NiLaxFe2-xO4 (with x=0, 0.05, 0.1 and 0.15), were prepared by polyacrylamide gel method. Influences of the amount of La3+ substitution on the structure and electromagnetic properties of NiLaxFe2-xO4 compounds were systematically investigated by DSC-TG, XRD, TEM and wave-guide method. XRD results indicated that the pure spinel-type crystal structure of the NiLaxFe2-xO4 (x=0 and 0.05) was obtained at 500 ℃. TEM results showed that the average particle sizes of NiFe2O4 and NiLa0.1Fe1.9O4 particles were about 10 and 15 nm, respectively. The complex permittivity and complex permeability was measured in the frequency range of 8.2~12.4 GHz. The results revealed that the nanocrystalline NiLaxFe2-xO4 had both dielectric loss and magnetic loss in the frequency range of 8.2~12.4 GHz. The tgδε and tgδm of NiLaxFe2-xO4 (with x=0 and 0.05) decreased with the increase of La3+ ions content, and some strong resonance peaks of the tgδε and tgδm of NiLaxFe2-xO4 (with x=0.1 and 0.15) appeared because of the secondary phases (LaFeO3) and more lattice defects.
文摘Li-Zn mixed ferrites with composition formula ZnxLi0.5-x/2Fe2.5-x/2O4 (0.2≤x≤0.8) were prepared by the usual ceramic method in 1000~1150℃. The effects of Zn substitution and sintering temperature on the formation, densification, microstructure and a.c. electrical conductivity have been studied. Under the effect of changing the firing temperature and Zn content, high sintered Li-Zn ferrite bodies are achieved. More fine structure bodies having high electrical resistance are obtained at high Zn content
文摘Nanostructured ZnFe2O4 was synthesized by the heat treatment of a mechanically activated mixture of ZnO/α-Fe2O3.X-ray diffraction(XRD)and differential thermal analysis(DTA)results demonstrated that,after 5 h of the mechanical activation of the mixture,ZnFe2O4 was formed by heat treatment at 750°C for 2 h.To improve the characteristics of ZnFe2O4 for adsorption applications,the chemical activation process was performed.The 2 h chemical activation with 1 mol·L?1 HNO3 and co-precipitation of 52%?57%dissolved ZnFe2O4 led to an increase in the saturated magnetization from 2.0 to 7.5 emu·g?1 and in the specific surface area from 5 to 198 m2·g?1.In addition,the observed particle size reduction of chemically activated ZnFe2O4 in field emission scanning electron microscopy(FESEM)micrographs was in agreement with the specific surface area increase.These improvements in ZnFe2O4 characteristics considerably affected the adsorption performance of this adsorbent.Adsorption results revealed that mechano-thermally synthesized ZnFe2O4 had the maximum arsenic adsorption of 38%with the adsorption capacity of 0.995 mg·g?1 in a 130 mg·L?1 solution of As(V)after 30 min of agitation.However,chemically activated ZnFe2O4 showed the maximum arsenic adsorption of approximately 99%with the adsorption capacity of 21.460 mg·g?1 under the same conditions.These results showed that the weak adsorption performance of mechano-thermally synthesized ZnFe2O4 was improved by the chemical activation process.
文摘Nano domain Al substituted Zinc ferrite was prepared by chemical route using Ethylene Diamine as ligand.High purity precursors nitrate salts of Zinc,Fe(3+),Al(3+)were utilized along with citric acid which acts as both fuel and complexing agent.Two different molar ratios of Zn(2+):(Fe3+):Al(3+)is 1:1.5:0.5 and 1:1.25:0.75.After ensuring proper mix of the solution Ethylene diamine was added dropwise to form a gel like mass with proper pH control.Before annealing,thermal analysis was carried to determine the crystallization/phase transition zone.Drying was carried in several stages.Initially,gel like mass was obtained after drying at 40°C while pH was about 7.Drying of gel was carried in oil bath at about 90°C and powdered mass obtained was grinded followed by auto combustion at 150°C for 60 minutes before annealing at 150°C,350°C,650°C,950°C for 2 hours to ensure the phase formation.Crystallite size,lattice strain and lattice parameters were studied from XRD analysis.
文摘The structures of the Mn-Zn ferrites synthesized under different sintering conditions by the sol-gel method were investigated by the X-ray diffraction (XRD) and the scanning electron microscopy (SEM) with focus on two factors: the pre-sintering treatment and the calcining time. The results show that the sintering conditions have significant effects on the structures and the particle size of the Mn-Zn ferrites. Compared with the products without pre-sintering, those pre-sintered at 500℃ have a single phase and no diffraction peaks of Fe2O3 that could be found. The effects of the pre-sintering temperature on the structures of the ferrites were also studied. As a result, 500℃ proves to be the favorite in the pre-sintering treatment. The XRD patterns of the ferrites calcined at 1 200℃ for 6 h will present diffraction peaks of pure crystallization of spinel phase while those for 2 h or 4 h will show peaks of Fe2O3. The SEM also bears witness to well-grown grains of pure Mn-Zn ferrites if calcined for 6 hours.
基金Funded by the National Science Foundation in China (No. 10804117)Natural Science Foundation of Shanghai (No. 08ZR1421900)the Major Program for the Fundamental Research of Shanghai (No. 06JC14033)
文摘Spinel zinc ferrites ZnFe2O4, prepared by co-precipitation method using the zinc nitrate Zn(NO3)2·6H2O and ferric nitrate Fe(NO3)3·2H2O as the raw materials, were characterized by the thermo gravimetric analysis (TG) and differential scanning calorimeter (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The influence of synthesis conditions, such as Zn/Fe molar ratio, pH value, the sintering temperature and time, on the microstructures was detailedly investigated. The relationships between the microstructures and the synthesis conditions were discussed. The results show that the pure spinel zinc ferrites ZnFe2O4 are formed when the Zn/Fe molar ratio is 1.05∶2 at pH=8.5 or Zn/Fe molar ratio is 1∶2 at Ph=9-10, and the precursors are sintered at 1100 ℃ for 4 h. Especially no other phases are observed when the Zn/Fe molar ratio is 1∶2 at pH=10 and the precursor is sintered above 700 ℃ for 4 h. The higher sintering temperature and longer sintering time contribute to grain growth.
基金This work was financially supported by the National Natural Science Foundation of China (No.20273051) the Scientific Foundation for returned students of MOE of China, and the Project KJCXGC-01 of Northwest Normal University.]
文摘A combustion synthesis method was adapted for the efficient preparation ofpure zinc ferrite particles (ZnFe_2O_4). It is based on the exothermic reaction of the correspondingmetal nitrates with a reducing agent, to produce extremely fine-grained ashes that readily convertinto pure ZnFe_2O_4 with treating thermally. The composition and microstructure of the so-obtainedsamples were studied by XRD (X-ray powder diffraction), TEM (Transmission Electron Microscopy) andAFM (Atomic Force Microscopy). These results showed that the range of particle size of ZnFe_2O_4 isabout 15-25 nm. Photocatalytic activities of nanometer ZnFe_2O_4 were also evaluated by degradationof the curcumin solution.
文摘1,8-Dioxo-octahydroxanthenes (4a-4f) and 1,8-dioxohexahydroacridines (5a-5c) were synthesized by novel, simple and eco-friendly method with higher yields in the presence of magnetically separable nano nickel-cobalt ferrite catalyst (Ni0.5Co0.5Fe2O4). The former, 1,8-dioxo-octahydroxanthenes have been synthesized from dimedone and different aromatic aldehydes, while the latter from this mixture are along with ammonium acetate. The main advantage of this method is that the nano catalyst can be reused up to five reaction cycles without losing the catalytic activity.
文摘In this paper, immobilized laccase enzyme on nano zinc ferrite was used in order to decolorize disperse dyes from single and binary systems. In this case, disperse dyes such as Disperse red 60 (DR60), Disperse blue 56 (DB56) and Disperse yellow 54 (DY54) were selected as model dyes. Several parameters such as enzyme concentration, pH and dye concentration and their effect on decolorization of dyes from single and binary systems were studied. According to the experimental results, the optimized immobilized laccase enzyme concentration, reaction time and pH for decolorization of DR60, DB56 and DY54 from single and binary systems were 500 mg/L (for DR60 and DY54) and 400 mg/L (for DB56), 20 min and 3, respectively. Moreover, Dye decolorization kinetics followed Michaelis-Menten Model. Finally, the results showed that enzymatic process using immobilized laccase enzyme on nano zinc ferrite was effective method to decolorize disperse dyes from single and binary systems.
文摘A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia. These in- clude (1) Versatic 10/CLXS0 system for the separation of Ni from Ca in sulphate solutions, (2) Versatic 10/4PC system for the separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (3) Cyanex 471X/HRJ-4277 system for the separation of Zn from Cd in sulphate solutions, (4) Versatic 10/LIX63 system for the separation of Co from Mn/Mg/Ca in sulphate solutions, (5) Versatic 10/LIX63/TBP system for separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (6) Versatic 10/LIX63 system for the separation of cobalt from nickel in sulphate solutions by difference in kinetics, (7) Cyanex 272/LIX84 system for the separation of Cu/Fe/Zn from Ni/Co in sulphate solutions, (8) Versatic 10/LIX63fFBP system to recover Cu/Ni from strong chloride solutions, and [9) Versatic 10/LIX63 system to separate Cu from Fe in strong chloride solutions. The synergistic effect on metal separation and efficiency is presented and possible industrial applications are demonstrated. The chemical stability of selected SSX systems is also reported.