Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper...Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.展开更多
In the semiconductor industry,recovering and capturing SF_(6)gas from the SF_(6)/N_(2)gas mixture has significant environmental and economic benefits.In this work,two Ni-based metal-organic frameworks(MOFs),Ni(i-na)(b...In the semiconductor industry,recovering and capturing SF_(6)gas from the SF_(6)/N_(2)gas mixture has significant environmental and economic benefits.In this work,two Ni-based metal-organic frameworks(MOFs),Ni(i-na)(bdc)_(0.5)(ina=isonicotinic acid,bdc=terephthalic acid)and methyl-functionalized Ni(3-min)(bdc)_(0.5)(3-min=3-methylisonicotinic acid),are constructed for SF_(6)capture.Ni(ina)(bdc)_(0.5)and Ni(3-min)(bdc)_(0.5)are both highly stable nine-connected porous materials.The pore sizes of these two materials are similar,but the pore environments are different,which has a bearing on the performance of SF_(6)/N_(2)separations.Ni(3-min)(bdc)0.s exhibits higher SF_(6)adsorption capacity(50.5 cm^(3)g^(-1))and IAST(ideal adsorbed solution theory)SF_(6)/N_(2)selectivity(91)owing to its smaller window diameter and suitable pore chemistry.Theoretical calculations indicate that the SF_(6)and N_(2)molecules interact with the framework at different cages,which reduces their competition for adsorption sites.The remarkable separation performance of Ni(ina)(bdc)_(0.5)and Ni(3-min)(bdc)_(0.5)is further verified by dynamic breakthrough experiments.Thus,these two adsorbents have the potential to be utilized in industrial applications due to their excellent structural stability and recyclability.展开更多
Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For ins...Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed.展开更多
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram...Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.展开更多
The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi...The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.展开更多
Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their d...Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.展开更多
In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can b...In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.展开更多
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin...With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.展开更多
Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability o...Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability of the organosulfur,as well as the mass-transfer resistance that exists in multiphase catalysis,have often limited the catalytic application of Cu-MOFs in C-S coupling reactions.In this paper,a Cu-MOFs catalyst modified by cetyltrimethylammonium bromide(CTAB)was designed to enhance mass transfer by increasing the adsorption of organic substrates using the long alkanes of CTAB.Concurrently,elemental sulfur was used to replace organosulfur to achieve a highly efficient and atom-economical multicomponent C-S coupling reaction.展开更多
Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framewo...Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs.展开更多
Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the ...Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the low energy density and the lack of sustainable design strategies for the cathodes hinder the practical application of ZIHCs.Herein,we design the N and O co-doped porous carbon cathode by annealing metal-organic framework(ZIF-8).ZIF-8 retains the original dodecahedral structure with a high specific surface(2814.67 m^(2)/g)and I_(G)/I_(D) ratio of 1.0 during carbonization and achieves self-doping of N and O heteroatoms.Abundant defect sites are introduced into the porous carbon to provide additional active sites for ion adsorption after the activation of carbonized ZIF-8 by KOH treatment.The ZIHCs assembled with modified ZIF-8 as the cathode and commercial zinc foil as the anode show an energy density of 125 W∙h/kg and a power density of 79 W/kg.In addition,this ZIHCs device achieves capacity retention of 77.8%after 9000 electrochemical cycles,which is attributed to the diverse pore structure and plentiful defect sites of ZIF-8-800(KOH).The proposed strategy may be useful in developing high-performance metal-ion hybrid capacitors for large-scale energy storage.展开更多
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th...A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling.展开更多
This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordinatio...This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordination and covalent bonding adapted from metal-organic frameworks(MOFs)and covalent organic frameworks(COFs),respectively.With an emphasis on the MCOF and CMOF structures,this review surveys their building blocks and topologies.Specifically,the frameworks are classified based on the dimensions of their components(building blocks),namely,discrete building blocks and one-dimensional infinite building blocks.For the first category,the materials are further divided into collections of two-and three-dimensional networks based on their topologies.For the second category,the recently emerging MCOFs with woven structures are covered.Finally,the state-of-the-art in MCOF and CMOF chemistry has been laid out for promising avenues in future developments.展开更多
The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.How...The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.However,one of the main obstacles of these systems is the poor reaction kinetics in the involved chemical reactions.Therefore,it is essential to incorporate suitable and efficient catalysts into the cell.These years,single-atom catalysts(SACs)are emerging as a frontier in catalysis due to their maximum atom efficiency and unique reaction selectivity.For SACs fabrication,metal-organic frameworks(MOFs)have been confirmed as promising templates or precursors due to their high metal loadings,structural adjustability,porosity,and tailorable catalytic site.In this review,we summarize effective strategies for fabricating SACs by MOFs with corresponding advanced characterization techniques and illustrate the key role of MOFs-based SACs in these batteries by explaining their reaction mechanisms and challenges.Finally,current applications,prospects,and opportunities for MOFs-based SACs in energy storage systems are discussed.展开更多
Heat treatment of metal-organic frameworks(MOFs)has provided a wide variety of functional carbons coordinated with metal compounds.In this study,two kinds of zinc-based MOF(ZMOF),C_(16)H_(10)O_(4)Zn(ZMOF1)and C_(8)H_(...Heat treatment of metal-organic frameworks(MOFs)has provided a wide variety of functional carbons coordinated with metal compounds.In this study,two kinds of zinc-based MOF(ZMOF),C_(16)H_(10)O_(4)Zn(ZMOF1)and C_(8)H_(4)O_(4)Zn(ZMOF2),were prepared.ZMOF1 and ZMOF2 were carbonized at 1000℃,forming CZMOF1 and CZMOF2,respectively.The specific surface area(S_(BET))of CZMOF2 was~2700 m^(2)g^(−1),much higher than that of CZMOF1(~1300 m^(2)g^(−1)).A supercapacitor electrode based on CZMOF2 achieved specific capacitances of 360,278,and 221 F g^(−1)at 50,250,and 1000 mA g^(−1)in an aqueous electrolyte(H2SO_(4)),respectively,the highest values reported to date for ZMOF-derived electrodes under identical conditions.The practical applicability of the CZMOF-based supercapacitor was verified in non-aqueous electrolytes.The initial capacitance retention was 78%after 100000 charge/discharge cycles at 10 A g^(−1).Crucially,the high capacitance of CZMOF2 arises from pore generation during carbonization.Below 1000℃,pore generation is dominated by the Zn/C ratio of ZMOFs,as carbon atoms reduce the zinc oxides formed during carbonization.Above 1000℃,a high O/C ratio becomes essential for pore generation because the oxygen functional groups are pyrolyzed.These findings will provide insightful information for other metal-based MOFderived multifunctional carbons.展开更多
The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources,and exploring advanced electrodes with high reversible capacity,excellent rate perfo...The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources,and exploring advanced electrodes with high reversible capacity,excellent rate performance,and long cycling life for Li/Na/Zn-ion batteries and supercapacitors is the key problem.Particularly because of their diverse structure,high specific surface area,and adjustable redox activity,electrically conductive metal-organic frameworks(c-MOFs)are considered promising candidates for these electrochemical applications,and a detailed overview of the recent progress of c-MOFs for electrochemical energy storage and their intrinsic energy storage mechanism helps realize a comprehensive and systematic understanding of this progress and further achieve highly efficient energy storage and conversion.Herein,the chemical structure of c-MOFs and their conductive mechanism are first introduced.Subsequently,a comprehensive summarization of the current applications of c-MOFs in energy storage systems,namely supercapacitors,LIBs,SIBs,and ZIBs,is presented.Finally,the prospects and challenges of c-MOFs toward much higher-performance energy storage devices are presented,which should illuminate the future scientific research and practical applications of c-MOFs in energy storage fields.展开更多
Metal-organic frameworks(MOFs)have been widely adopted in various fields(catalysis,sensor,energy storage,etc.)during the last decade owing to the trait of abundant surface chemistry,porous structure,easy-to-adjust por...Metal-organic frameworks(MOFs)have been widely adopted in various fields(catalysis,sensor,energy storage,etc.)during the last decade owing to the trait of abundant surface chemistry,porous structure,easy-to-adjust pore size,and diverse functional groups.However,the limited active sites and the poor conductivity hinder the relative practical application.2D MOFs can shorten the ion transport path with the merit of layered structure.The large surface area can increase the number of active sites as well as effectively utilize the sufficient active sites,exhibiting enormous potential in the field of energy storage systems(EESs).In this review,the characteristics of the 2D MOFs have been introduced,and the systematic synthesis methods(top-down and bottom-up)of 2D MOFs are presented,providing fundamental understanding for the construction of 2D MOFs.Moreover,the applications of 2D MOFs in energy storage fields such as supercapacitors and batteries are demonstrated in detail.Finally,the future development prospects have been proposed,offering guidelines for the rational utilization of 2D MOFs and promoting the understanding of 2D MOFs in EESs.展开更多
The combination of nano sizes,large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks(MOFs).Herein,a water-based strategy is prop...The combination of nano sizes,large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks(MOFs).Herein,a water-based strategy is proposed for the synthesis of nanoscale hierarchical MOFs(NH-MOFs)with high crystallinity and excellent stability.This approach allows the morphology and porosity of MOFs to be fine tuned,thereby enabling the nanoscale crystal generation and a well-defined hierarchical system.The aqueous solution facilitates rapid nucleation kinetics,and the introduced modulator acts as a deprotonation agent to accelerate the deprotonation of the organic ligand as well as a structure-directing agent(SDA)to guide the formation of hierarchical networks.The assynthesized NH-MOFs(NH-ZIF-67)were assessed as efficient adsorbents and heterogeneous catalysts to facilitate the diffusion of guest molecules,outperforming the parent microZIF-67.This study focuses on understanding the NH-MOF growth rules,which could allow tailor-designing NH-MOFs for various functions.展开更多
Photoelectrochemical reduction of CO_(2)to produce CO with metal-organic frameworks(MOFs)is recognized as a desirable technology to mitigate CO_(2)emission and generate sustainable energy.To achieve highly efficient e...Photoelectrochemical reduction of CO_(2)to produce CO with metal-organic frameworks(MOFs)is recognized as a desirable technology to mitigate CO_(2)emission and generate sustainable energy.To achieve highly efficient electrocatalyst,it is essential to design a new material interface and uncover new reaction mechanisms or kinetics.Herein,we developed two metal-organic Cu-MOF and Bi-MOF layers using benzene tricarboxylic acid(H_(3)BTC)ligands on CuBi_(2)O_(4) photocathodes.Both MOF layers drastically improved the photoelectrochemical stability by suppressing the photo-corrosion through conformal surface passivation.The Cu-MOF modified CuBi_(2)O_(4) showed more significant charge separation and transfer efficiencies than the Bi-MOF modified control.Based on the transient photocurrent curves under the applied potential of 0.6 V vs.RHE,the rate-law analysis showed the CO_(2)photoreduction took place through a first-order reaction.Further,the photoelectrochemical impedance spectra(PEIS)revealed this reaction order,representing an“operando”analysis.Moreover,the reaction rate constant on Cu-MOF modified sample was higher than that on Bi-MOF modified one and bare CuBi_(2)O_(4).Combined with the density functional theory calculation,the surface absorption of CO_(2)and CO molecules and the higher energy barrier for*COOH intermediates could significantly determine the first order reaction.展开更多
As more and more pollutants threaten human health, it is necessary and essential to develop sensitive, accurate and rapid methods and sensory materials to detect harmful substance. Metal-organic frameworks (MOFs) are ...As more and more pollutants threaten human health, it is necessary and essential to develop sensitive, accurate and rapid methods and sensory materials to detect harmful substance. Metal-organic frameworks (MOFs) are inorganic-organic hybrids assembled from inorganic metal ions or clusters and suitable organic ligands. Zinc-based MOFs (Zn-MOFs) have emerged as one of the most promising sensory material of MOFs for practical applications, and attracted significant attention due to structural diversity and incomparable stability properties. However, there are few reviews on systemic summary of synthesis design, mechanism and application of Zn-MOFs. In this review, we summarize the synthesis design methods, structure types and luminescence mechanism of Zn-MOFs sensor recognition in the past ten years and their applications in metal cations, anions, organic compounds and other analytes. Finally, we present a short conclusion, and look forward to the future development direction of Zn-MOFs.展开更多
基金supported by the National Key Research and Development Program of China (2022YFB4002100)the development project of Zhejiang Province's "Jianbing" and "Lingyan" (2023C01226)+4 种基金the National Natural Science Foundation of China (22278364, U22A20432, 22238008, 22211530045, and 22178308)the Fundamental Research Funds for the Central Universities (226-2022-00044 and 226-2022-00055)the Science Foundation of Donghai Laboratory (DH-2022ZY0009)the Startup Foundation for Hundred-Talent Program of Zhejiang UniversityScientific Research Fund of Zhejiang Provincial Education Department.
文摘Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.
基金financially supported by the National Natural Science Foundation of China(No,21901198)the Thousand Talents Programs of Shaanxi Province and Shccig-Qinling Program.
文摘In the semiconductor industry,recovering and capturing SF_(6)gas from the SF_(6)/N_(2)gas mixture has significant environmental and economic benefits.In this work,two Ni-based metal-organic frameworks(MOFs),Ni(i-na)(bdc)_(0.5)(ina=isonicotinic acid,bdc=terephthalic acid)and methyl-functionalized Ni(3-min)(bdc)_(0.5)(3-min=3-methylisonicotinic acid),are constructed for SF_(6)capture.Ni(ina)(bdc)_(0.5)and Ni(3-min)(bdc)_(0.5)are both highly stable nine-connected porous materials.The pore sizes of these two materials are similar,but the pore environments are different,which has a bearing on the performance of SF_(6)/N_(2)separations.Ni(3-min)(bdc)0.s exhibits higher SF_(6)adsorption capacity(50.5 cm^(3)g^(-1))and IAST(ideal adsorbed solution theory)SF_(6)/N_(2)selectivity(91)owing to its smaller window diameter and suitable pore chemistry.Theoretical calculations indicate that the SF_(6)and N_(2)molecules interact with the framework at different cages,which reduces their competition for adsorption sites.The remarkable separation performance of Ni(ina)(bdc)_(0.5)and Ni(3-min)(bdc)_(0.5)is further verified by dynamic breakthrough experiments.Thus,these two adsorbents have the potential to be utilized in industrial applications due to their excellent structural stability and recyclability.
基金supported by the National Natural Science Foundation of China(22179006)。
文摘Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21978119,22202088)Key Research and Development Plan of Hainan Province(ZDYF2022SHFZ285)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB636)。
文摘Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.
基金supported by the National Natural Science Foundation of China(22171001,22305001,51972001,52372073)the Natural Science Foundation of Anhui Province of China(2108085MB49).
文摘The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.
基金Project supported by the Science Challenge Project(Grant No.TZ2018001)the National Natural Science Foundation of China(Grant Nos.11872058 and 21802036)the Project of State Key Laboratory of Environment-friendly Energy Materials,and Southwest University of Science and Technology(Grant No.21fksy07)。
文摘Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs.
基金National Key Research and Development Program of China (2021YFB3500700)National Natural Science Foundation of China (51802015)Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.
基金the Beijing Nova Program(20230484431)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(2022KF12)is gratefully acknowledged.
文摘With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
基金support from the National Natural Science Foundation of China(22078130)the Fundamental Research Funds for the Central Universities(1042050205225990/010)Starting Research Fund of Qingyuan Innovation Laboratory(00523001).
文摘Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability of the organosulfur,as well as the mass-transfer resistance that exists in multiphase catalysis,have often limited the catalytic application of Cu-MOFs in C-S coupling reactions.In this paper,a Cu-MOFs catalyst modified by cetyltrimethylammonium bromide(CTAB)was designed to enhance mass transfer by increasing the adsorption of organic substrates using the long alkanes of CTAB.Concurrently,elemental sulfur was used to replace organosulfur to achieve a highly efficient and atom-economical multicomponent C-S coupling reaction.
基金financially supported by National Natural Science Foundation of China(No.82204604,22304055)Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)+1 种基金Natural Science Foundation of Hebei Province(No.E2020209151,E2022209158,H2022209012)Science and Technology Project of Hebei Education Department(No.JZX2024026)。
文摘Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs.
基金Project(22109181)supported by the National Natural Science Foundation of ChinaProject(2022JJ40576)supported by the Hunan Provincial Natural Science Foundation of China。
文摘Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the low energy density and the lack of sustainable design strategies for the cathodes hinder the practical application of ZIHCs.Herein,we design the N and O co-doped porous carbon cathode by annealing metal-organic framework(ZIF-8).ZIF-8 retains the original dodecahedral structure with a high specific surface(2814.67 m^(2)/g)and I_(G)/I_(D) ratio of 1.0 during carbonization and achieves self-doping of N and O heteroatoms.Abundant defect sites are introduced into the porous carbon to provide additional active sites for ion adsorption after the activation of carbonized ZIF-8 by KOH treatment.The ZIHCs assembled with modified ZIF-8 as the cathode and commercial zinc foil as the anode show an energy density of 125 W∙h/kg and a power density of 79 W/kg.In addition,this ZIHCs device achieves capacity retention of 77.8%after 9000 electrochemical cycles,which is attributed to the diverse pore structure and plentiful defect sites of ZIF-8-800(KOH).The proposed strategy may be useful in developing high-performance metal-ion hybrid capacitors for large-scale energy storage.
基金supported by the National Natural Science Foundation of China(No.21501015)the Hunan Provincial Natural Science Foundation,China(No.2022JJ30604)Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,China(No.2022CL01)。
文摘A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling.
基金financially supported by the National Natural Science Foundation of China(No.22176135)the Fundamental Research Funds for the Central Universities in China(No.YJ201976)。
文摘This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordination and covalent bonding adapted from metal-organic frameworks(MOFs)and covalent organic frameworks(COFs),respectively.With an emphasis on the MCOF and CMOF structures,this review surveys their building blocks and topologies.Specifically,the frameworks are classified based on the dimensions of their components(building blocks),namely,discrete building blocks and one-dimensional infinite building blocks.For the first category,the materials are further divided into collections of two-and three-dimensional networks based on their topologies.For the second category,the recently emerging MCOFs with woven structures are covered.Finally,the state-of-the-art in MCOF and CMOF chemistry has been laid out for promising avenues in future developments.
基金Financial support was provided by the Guangdong College Students’Innovative Project(202110580014)the Guangdong “Climbing”Program for Research Items(pdjh2021b0544)。
文摘The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.However,one of the main obstacles of these systems is the poor reaction kinetics in the involved chemical reactions.Therefore,it is essential to incorporate suitable and efficient catalysts into the cell.These years,single-atom catalysts(SACs)are emerging as a frontier in catalysis due to their maximum atom efficiency and unique reaction selectivity.For SACs fabrication,metal-organic frameworks(MOFs)have been confirmed as promising templates or precursors due to their high metal loadings,structural adjustability,porosity,and tailorable catalytic site.In this review,we summarize effective strategies for fabricating SACs by MOFs with corresponding advanced characterization techniques and illustrate the key role of MOFs-based SACs in these batteries by explaining their reaction mechanisms and challenges.Finally,current applications,prospects,and opportunities for MOFs-based SACs in energy storage systems are discussed.
基金partially supported by a Grant-in-Aid for Scientific Research(KAKENHI)from the Japan Society for the Promotion of Science(JSPS)(grant number 19H05332)。
文摘Heat treatment of metal-organic frameworks(MOFs)has provided a wide variety of functional carbons coordinated with metal compounds.In this study,two kinds of zinc-based MOF(ZMOF),C_(16)H_(10)O_(4)Zn(ZMOF1)and C_(8)H_(4)O_(4)Zn(ZMOF2),were prepared.ZMOF1 and ZMOF2 were carbonized at 1000℃,forming CZMOF1 and CZMOF2,respectively.The specific surface area(S_(BET))of CZMOF2 was~2700 m^(2)g^(−1),much higher than that of CZMOF1(~1300 m^(2)g^(−1)).A supercapacitor electrode based on CZMOF2 achieved specific capacitances of 360,278,and 221 F g^(−1)at 50,250,and 1000 mA g^(−1)in an aqueous electrolyte(H2SO_(4)),respectively,the highest values reported to date for ZMOF-derived electrodes under identical conditions.The practical applicability of the CZMOF-based supercapacitor was verified in non-aqueous electrolytes.The initial capacitance retention was 78%after 100000 charge/discharge cycles at 10 A g^(−1).Crucially,the high capacitance of CZMOF2 arises from pore generation during carbonization.Below 1000℃,pore generation is dominated by the Zn/C ratio of ZMOFs,as carbon atoms reduce the zinc oxides formed during carbonization.Above 1000℃,a high O/C ratio becomes essential for pore generation because the oxygen functional groups are pyrolyzed.These findings will provide insightful information for other metal-based MOFderived multifunctional carbons.
基金supported by the National Natural Science Foundation of China(Nos.22002107 and 21905202).
文摘The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources,and exploring advanced electrodes with high reversible capacity,excellent rate performance,and long cycling life for Li/Na/Zn-ion batteries and supercapacitors is the key problem.Particularly because of their diverse structure,high specific surface area,and adjustable redox activity,electrically conductive metal-organic frameworks(c-MOFs)are considered promising candidates for these electrochemical applications,and a detailed overview of the recent progress of c-MOFs for electrochemical energy storage and their intrinsic energy storage mechanism helps realize a comprehensive and systematic understanding of this progress and further achieve highly efficient energy storage and conversion.Herein,the chemical structure of c-MOFs and their conductive mechanism are first introduced.Subsequently,a comprehensive summarization of the current applications of c-MOFs in energy storage systems,namely supercapacitors,LIBs,SIBs,and ZIBs,is presented.Finally,the prospects and challenges of c-MOFs toward much higher-performance energy storage devices are presented,which should illuminate the future scientific research and practical applications of c-MOFs in energy storage fields.
基金supported by the National Natural Science Foundation of China(52004338,51622406,21673298)Hunan Provincial Natural Science Foundation(2022JJ20075)Scientific Research Fund of Hunan Provincial Education Department(21B0017).
文摘Metal-organic frameworks(MOFs)have been widely adopted in various fields(catalysis,sensor,energy storage,etc.)during the last decade owing to the trait of abundant surface chemistry,porous structure,easy-to-adjust pore size,and diverse functional groups.However,the limited active sites and the poor conductivity hinder the relative practical application.2D MOFs can shorten the ion transport path with the merit of layered structure.The large surface area can increase the number of active sites as well as effectively utilize the sufficient active sites,exhibiting enormous potential in the field of energy storage systems(EESs).In this review,the characteristics of the 2D MOFs have been introduced,and the systematic synthesis methods(top-down and bottom-up)of 2D MOFs are presented,providing fundamental understanding for the construction of 2D MOFs.Moreover,the applications of 2D MOFs in energy storage fields such as supercapacitors and batteries are demonstrated in detail.Finally,the future development prospects have been proposed,offering guidelines for the rational utilization of 2D MOFs and promoting the understanding of 2D MOFs in EESs.
基金the National Key Research and Development Program(2019YFC1805804)the National Natural Science Foundation of China(22008032)+3 种基金the Guangdong Natural Science Foundation(2022A1515011192)the Guangdong Basic and Applied Basic Research Foundation(2019A1515110706)the Guangdong Provincial Key Lab of Green Chemical Product Technology(GC202111)the China Postdoctoral Science Foundation(2021M691059).
文摘The combination of nano sizes,large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks(MOFs).Herein,a water-based strategy is proposed for the synthesis of nanoscale hierarchical MOFs(NH-MOFs)with high crystallinity and excellent stability.This approach allows the morphology and porosity of MOFs to be fine tuned,thereby enabling the nanoscale crystal generation and a well-defined hierarchical system.The aqueous solution facilitates rapid nucleation kinetics,and the introduced modulator acts as a deprotonation agent to accelerate the deprotonation of the organic ligand as well as a structure-directing agent(SDA)to guide the formation of hierarchical networks.The assynthesized NH-MOFs(NH-ZIF-67)were assessed as efficient adsorbents and heterogeneous catalysts to facilitate the diffusion of guest molecules,outperforming the parent microZIF-67.This study focuses on understanding the NH-MOF growth rules,which could allow tailor-designing NH-MOFs for various functions.
基金supported by the National Natural Science Foundation of China(Project.U1604121)and Startup funding from Suzhou University of Science and Technology.
文摘Photoelectrochemical reduction of CO_(2)to produce CO with metal-organic frameworks(MOFs)is recognized as a desirable technology to mitigate CO_(2)emission and generate sustainable energy.To achieve highly efficient electrocatalyst,it is essential to design a new material interface and uncover new reaction mechanisms or kinetics.Herein,we developed two metal-organic Cu-MOF and Bi-MOF layers using benzene tricarboxylic acid(H_(3)BTC)ligands on CuBi_(2)O_(4) photocathodes.Both MOF layers drastically improved the photoelectrochemical stability by suppressing the photo-corrosion through conformal surface passivation.The Cu-MOF modified CuBi_(2)O_(4) showed more significant charge separation and transfer efficiencies than the Bi-MOF modified control.Based on the transient photocurrent curves under the applied potential of 0.6 V vs.RHE,the rate-law analysis showed the CO_(2)photoreduction took place through a first-order reaction.Further,the photoelectrochemical impedance spectra(PEIS)revealed this reaction order,representing an“operando”analysis.Moreover,the reaction rate constant on Cu-MOF modified sample was higher than that on Bi-MOF modified one and bare CuBi_(2)O_(4).Combined with the density functional theory calculation,the surface absorption of CO_(2)and CO molecules and the higher energy barrier for*COOH intermediates could significantly determine the first order reaction.
文摘As more and more pollutants threaten human health, it is necessary and essential to develop sensitive, accurate and rapid methods and sensory materials to detect harmful substance. Metal-organic frameworks (MOFs) are inorganic-organic hybrids assembled from inorganic metal ions or clusters and suitable organic ligands. Zinc-based MOFs (Zn-MOFs) have emerged as one of the most promising sensory material of MOFs for practical applications, and attracted significant attention due to structural diversity and incomparable stability properties. However, there are few reviews on systemic summary of synthesis design, mechanism and application of Zn-MOFs. In this review, we summarize the synthesis design methods, structure types and luminescence mechanism of Zn-MOFs sensor recognition in the past ten years and their applications in metal cations, anions, organic compounds and other analytes. Finally, we present a short conclusion, and look forward to the future development direction of Zn-MOFs.