A continuous marine fish cell line RSBF (i.e. Red Sea Bream Fin) was utilized to screen the cytotoxicity and genotoxicity of polyethylenimine (PEI) and nickel chloride (NiCl 2) in this study on the deleterious effects...A continuous marine fish cell line RSBF (i.e. Red Sea Bream Fin) was utilized to screen the cytotoxicity and genotoxicity of polyethylenimine (PEI) and nickel chloride (NiCl 2) in this study on the deleterious effects of aquatic genotoxins on fish. At the 0.01 to 1 μg/ml concentration tested, PEI had acute toxicity to the treated RSBF cells (IC 50 =1.12, 0.92, 0.88 and 0.64 μg/ml PEI for time 0 h, 24 h, 48 h and 72 h after treatment, respectively) and markedly inhibited their proliferation in a dose dependent manner. At the 0.001 to 5 μmol/L concentration tested, NiCl 2 posed no acute toxicity but significantly stimulated their growth (107%-214% of control). Random amplified polymorphic DNA (RAPD) technique was used to detect the genotoxic effects of PEI and NiCl 2 by comparing the RAPD banding patterns of the control and treated cells. RAPD analysis indicated that at the concentrations tested, PEI was more genotoxic than NiCl 2 to RSBF cells; that there was a slight dose dependent response in the genotoxic effect of PEI but not NiCl 2; and that RAPD technique might provide a sensitive, non specific genotoxic endpoint. And the potent cytotoxicity and genotoxicity of PEI on fish cells showed that we should be cautious in utilizing it as gene vector in fish gene transfer and human gene therapy.展开更多
A Glaser coupling reaction of terminal alkynes in the presence of nickel chloride without any organics and bases in hot water has been developed, which produces the corresponding homo-coupling products in good yields.
The cyclic voltammetry, currenttime curve at potential step and constant current method were used to investigate the electrochemical behaviour of nickel chloride on the Pt eletrodes in N,Ndimethylformamide (DMF). The ...The cyclic voltammetry, currenttime curve at potential step and constant current method were used to investigate the electrochemical behaviour of nickel chloride on the Pt eletrodes in N,Ndimethylformamide (DMF). The experimental results indicate that the reduction of Ni() is irreversible in two steps, first Ni(solvent)n]()+2e (0) and then is reduced to the metal. The transfer coefficient and diffusion coefficient of Ni() in DMF were also determined.展开更多
The formation enthalpy of complex nickel(Ⅱ) histidine(His) in water was determined by means of microcalorimetry in the temperature range of 298 15-323 15 K. The standard enthalpy of the formation of Ni(His) 2...The formation enthalpy of complex nickel(Ⅱ) histidine(His) in water was determined by means of microcalorimetry in the temperature range of 298 15-323 15 K. The standard enthalpy of the formation of Ni(His) 2+ 2(aq) was calculated. On the basis of the experimental and the calculated results, three thermodynamic parameters(the activation enthalpy, the activation entropy and the activation free energy), the rate constants, three kinetic parameters(the apparent activation energy, the pre exponential constant and the reaction order) of the formation reaction of the title complex were obtained.展开更多
Pyridine was used as a solvent for homocoupling of aryl bromides catalyzed by nickel chloride/triarylphosphine in the presence of zinc and recycled easily. Triphenylphosphine was the best ligand for nickel in this cou...Pyridine was used as a solvent for homocoupling of aryl bromides catalyzed by nickel chloride/triarylphosphine in the presence of zinc and recycled easily. Triphenylphosphine was the best ligand for nickel in this coupling reaction.展开更多
The aim of this study was to investigate the role of selenoprotein M(SelM)in endoplasmic reticulum stress and apoptosis in nickel-exposed mouse hearts and to explore the detoxifying effects of melatonin.At 21 d after ...The aim of this study was to investigate the role of selenoprotein M(SelM)in endoplasmic reticulum stress and apoptosis in nickel-exposed mouse hearts and to explore the detoxifying effects of melatonin.At 21 d after intraperitoneal injection of nickel chloride(NiCl_(2))and/or melatonin into male wild-type(WT)and SelM knockout(KO)C57BL/6J mice,NiCl_(2)was found to induce changes in the microstructure and ultrastructure of the hearts of both WT and SelM KO mice,which were caused by oxidative stress,endoplasmic reticulum stress,and apoptosis,as evidenced by decreases in malondialdehyde(MDA)content and total antioxidant capacity(T-AOC)activity.Changes in the messenger RNA(mRNA)and protein expression of genes related to endoplasmic reticulum stress(activating transcription factor 4(ATF4),inositol-requiring protein 1(IRE1),c-Jun N-terminal kinase(JNK),and C/EBP homologous protein(CHOP))and apoptosis(B-cell lymphoma-2(Bcl-2),Bcl-2-associated X protein(Bax),Caspase-3,Caspase-9,and Caspase-12)were also observed.Notably,the observed damage was worse in SelM KO mice.Furthermore,melatonin alleviated the heart injury caused by NiCl_(2)in WT mice but could not exert a good protective effect in the heart of SelM KO mice.Overall,the findings suggested that the antioxidant capacity of SelM,as well as its modulation of endoplasmic reticulum stress and apoptosis,plays important roles in nickel-induced heart injury.展开更多
Nickel(II) chloride materials were synthesized via a novel two-step variable-temperature method for the use as a cathode material in Li-B/NiCI2 cells with the LiCI-LiBr- LiF electrolyte. The influence of temperature...Nickel(II) chloride materials were synthesized via a novel two-step variable-temperature method for the use as a cathode material in Li-B/NiCI2 cells with the LiCI-LiBr- LiF electrolyte. The influence of temperature on its structure, surface morphology, and electrochemical performance was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements of single cells. XRD results showed that after pre-dehydration for 2 h at 270℃ followed by sintering for 5 h at 600℃, the crystal water in nickel chloride hexahydrate could be removed effectively. The SEM results showed that particles recombined to form larger coarse particles and presented a layered structure. Discharge tests showed that the 600℃-treated materials demonstrated remarkable specific capacities of 210.42 and 242.84 mA h g^-1 at constant currents of 0.5 and 2.0 A, respectively. Therefore, the Li-B/NiCI2 thermal battery showed excellent discharge performance. The present work demonstrates that NiCl2 is a promising cathode material for thermal batteries and this two-step variable-temperature method is a simple and useful method for the fabrication of NiCl2 materials.展开更多
NiCl_(2) with high theoretical voltage and thermal decomposition temperature attracts much attention as cathode material for thermal batteries with the requirement of high power density, high energy density and long w...NiCl_(2) with high theoretical voltage and thermal decomposition temperature attracts much attention as cathode material for thermal batteries with the requirement of high power density, high energy density and long work time. Unfortunately, the practical utilization of thermal batteries with NiCl_(2) cathode is limited by their poor electrochemical performance under large current, even with the conventional Li F-Li Cl-Li Br all-lithium molten salt electrolyte which proposes ultrahigh lithium ion conductivity. In this work, an unexpected ionic exchange reaction between NiCl_(2) and Li Br in Li F-Li Cl-Li Br was found, which would be the main reason for the poor electrochemical behavior of thermal batteries with NiCl_(2) cathode and Li F-Li Cl-Li Br molten salt. On this basis, Li F-Li Cl-Li_(2)SO_(4), another all-lithium molten salt free of Li Br, was investigated as the new electrolyte for NiCl_(2) cathode. For the single cell of Li(Si)/Li F-Li Cl-Li_(2)SO_(4)/NiCl_(2), a discharge capacity of 377 mA h g^(-1)(with a cut-off voltage of 1.2 V) was achieved with large current density(500 mA cm^(-2)) applied at 520℃, which is almost twice of that of Li(Si)/Li F-Li Cl-Li Br/NiCl_(2)(190 mA h g^(-1)) at the same conditions.展开更多
文摘A continuous marine fish cell line RSBF (i.e. Red Sea Bream Fin) was utilized to screen the cytotoxicity and genotoxicity of polyethylenimine (PEI) and nickel chloride (NiCl 2) in this study on the deleterious effects of aquatic genotoxins on fish. At the 0.01 to 1 μg/ml concentration tested, PEI had acute toxicity to the treated RSBF cells (IC 50 =1.12, 0.92, 0.88 and 0.64 μg/ml PEI for time 0 h, 24 h, 48 h and 72 h after treatment, respectively) and markedly inhibited their proliferation in a dose dependent manner. At the 0.001 to 5 μmol/L concentration tested, NiCl 2 posed no acute toxicity but significantly stimulated their growth (107%-214% of control). Random amplified polymorphic DNA (RAPD) technique was used to detect the genotoxic effects of PEI and NiCl 2 by comparing the RAPD banding patterns of the control and treated cells. RAPD analysis indicated that at the concentrations tested, PEI was more genotoxic than NiCl 2 to RSBF cells; that there was a slight dose dependent response in the genotoxic effect of PEI but not NiCl 2; and that RAPD technique might provide a sensitive, non specific genotoxic endpoint. And the potent cytotoxicity and genotoxicity of PEI on fish cells showed that we should be cautious in utilizing it as gene vector in fish gene transfer and human gene therapy.
文摘A Glaser coupling reaction of terminal alkynes in the presence of nickel chloride without any organics and bases in hot water has been developed, which produces the corresponding homo-coupling products in good yields.
文摘The cyclic voltammetry, currenttime curve at potential step and constant current method were used to investigate the electrochemical behaviour of nickel chloride on the Pt eletrodes in N,Ndimethylformamide (DMF). The experimental results indicate that the reduction of Ni() is irreversible in two steps, first Ni(solvent)n]()+2e (0) and then is reduced to the metal. The transfer coefficient and diffusion coefficient of Ni() in DMF were also determined.
基金Supported by the National Natural Science Foundation of China(No.2 0 170 36 )
文摘The formation enthalpy of complex nickel(Ⅱ) histidine(His) in water was determined by means of microcalorimetry in the temperature range of 298 15-323 15 K. The standard enthalpy of the formation of Ni(His) 2+ 2(aq) was calculated. On the basis of the experimental and the calculated results, three thermodynamic parameters(the activation enthalpy, the activation entropy and the activation free energy), the rate constants, three kinetic parameters(the apparent activation energy, the pre exponential constant and the reaction order) of the formation reaction of the title complex were obtained.
文摘Pyridine was used as a solvent for homocoupling of aryl bromides catalyzed by nickel chloride/triarylphosphine in the presence of zinc and recycled easily. Triphenylphosphine was the best ligand for nickel in this coupling reaction.
基金supported by the Heilongjiang Provincial Natural Science Foundation for Outstanding Youth(No.YQ2021C021),China。
文摘The aim of this study was to investigate the role of selenoprotein M(SelM)in endoplasmic reticulum stress and apoptosis in nickel-exposed mouse hearts and to explore the detoxifying effects of melatonin.At 21 d after intraperitoneal injection of nickel chloride(NiCl_(2))and/or melatonin into male wild-type(WT)and SelM knockout(KO)C57BL/6J mice,NiCl_(2)was found to induce changes in the microstructure and ultrastructure of the hearts of both WT and SelM KO mice,which were caused by oxidative stress,endoplasmic reticulum stress,and apoptosis,as evidenced by decreases in malondialdehyde(MDA)content and total antioxidant capacity(T-AOC)activity.Changes in the messenger RNA(mRNA)and protein expression of genes related to endoplasmic reticulum stress(activating transcription factor 4(ATF4),inositol-requiring protein 1(IRE1),c-Jun N-terminal kinase(JNK),and C/EBP homologous protein(CHOP))and apoptosis(B-cell lymphoma-2(Bcl-2),Bcl-2-associated X protein(Bax),Caspase-3,Caspase-9,and Caspase-12)were also observed.Notably,the observed damage was worse in SelM KO mice.Furthermore,melatonin alleviated the heart injury caused by NiCl_(2)in WT mice but could not exert a good protective effect in the heart of SelM KO mice.Overall,the findings suggested that the antioxidant capacity of SelM,as well as its modulation of endoplasmic reticulum stress and apoptosis,plays important roles in nickel-induced heart injury.
基金supported by Shanghai Institute of Space Power-sources(SISP)
文摘Nickel(II) chloride materials were synthesized via a novel two-step variable-temperature method for the use as a cathode material in Li-B/NiCI2 cells with the LiCI-LiBr- LiF electrolyte. The influence of temperature on its structure, surface morphology, and electrochemical performance was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements of single cells. XRD results showed that after pre-dehydration for 2 h at 270℃ followed by sintering for 5 h at 600℃, the crystal water in nickel chloride hexahydrate could be removed effectively. The SEM results showed that particles recombined to form larger coarse particles and presented a layered structure. Discharge tests showed that the 600℃-treated materials demonstrated remarkable specific capacities of 210.42 and 242.84 mA h g^-1 at constant currents of 0.5 and 2.0 A, respectively. Therefore, the Li-B/NiCI2 thermal battery showed excellent discharge performance. The present work demonstrates that NiCl2 is a promising cathode material for thermal batteries and this two-step variable-temperature method is a simple and useful method for the fabrication of NiCl2 materials.
基金supported by the National Nature Science Associate Foundation (NSAF) of China (Grant No. U1930208)the Laboratory of Precision Manufacturing Technology+2 种基金China Academy of Engineering Physics (Grant No. ZD17006,ZM18002)the National Natural Science Foundation of China (Grant Nos. 11804312 and 21703215)the Science and Technology Innovation Foundation of Institute of Electronic Engineering (Grant No. S201904)。
文摘NiCl_(2) with high theoretical voltage and thermal decomposition temperature attracts much attention as cathode material for thermal batteries with the requirement of high power density, high energy density and long work time. Unfortunately, the practical utilization of thermal batteries with NiCl_(2) cathode is limited by their poor electrochemical performance under large current, even with the conventional Li F-Li Cl-Li Br all-lithium molten salt electrolyte which proposes ultrahigh lithium ion conductivity. In this work, an unexpected ionic exchange reaction between NiCl_(2) and Li Br in Li F-Li Cl-Li Br was found, which would be the main reason for the poor electrochemical behavior of thermal batteries with NiCl_(2) cathode and Li F-Li Cl-Li Br molten salt. On this basis, Li F-Li Cl-Li_(2)SO_(4), another all-lithium molten salt free of Li Br, was investigated as the new electrolyte for NiCl_(2) cathode. For the single cell of Li(Si)/Li F-Li Cl-Li_(2)SO_(4)/NiCl_(2), a discharge capacity of 377 mA h g^(-1)(with a cut-off voltage of 1.2 V) was achieved with large current density(500 mA cm^(-2)) applied at 520℃, which is almost twice of that of Li(Si)/Li F-Li Cl-Li Br/NiCl_(2)(190 mA h g^(-1)) at the same conditions.