In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noet...In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noether'sconserved quantity,the new form conserved quantity,and the Hojman's conserved quantity of system are derived fromthem.Finally,an example is given to illustrate the application of the result.展开更多
This paper focuses on studying non-Noether conserved quantities of Lie symmetry and of form invariance for a mechanical system in phase space under the general infinitesimal transformation of groups. We obtain a new n...This paper focuses on studying non-Noether conserved quantities of Lie symmetry and of form invariance for a mechanical system in phase space under the general infinitesimal transformation of groups. We obtain a new nonNoether conserved quantity of Lie symmetry of the system, and Hojman and Mei's results are of special cases of our con-clusion. We find a condition under which the form invariance of the system will lead to a Lie symmetry, and, further, obtain a new non-Noether conserved quantity of form invariance of the system. An example is given finally to illustrate these results.展开更多
基金National Natural Science Foundation of China under Grant No.10272034the Doctoral Program Foundation of China
文摘In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noether'sconserved quantity,the new form conserved quantity,and the Hojman's conserved quantity of system are derived fromthem.Finally,an example is given to illustrate the application of the result.
文摘This paper focuses on studying non-Noether conserved quantities of Lie symmetry and of form invariance for a mechanical system in phase space under the general infinitesimal transformation of groups. We obtain a new nonNoether conserved quantity of Lie symmetry of the system, and Hojman and Mei's results are of special cases of our con-clusion. We find a condition under which the form invariance of the system will lead to a Lie symmetry, and, further, obtain a new non-Noether conserved quantity of form invariance of the system. An example is given finally to illustrate these results.