期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Regulation of Calcium on Peanut Photosynthesis Under Low Night Temperature Stress 被引量:9
1
作者 LIU Yi-fei HAN Xiao-ri +4 位作者 ZHAN Xiu-mei YANG Jin-feng WANG Yu-zhi SONG Qiao-bo CHEN Xin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第12期2172-2178,共7页
The effects of different levels of CaCl 2 on photosynthesis under low night temperature(8°C) stress in peanuts were studied in order to find out the appropriate concentration of Ca2+through the artificial clim... The effects of different levels of CaCl 2 on photosynthesis under low night temperature(8°C) stress in peanuts were studied in order to find out the appropriate concentration of Ca2+through the artificial climate chamber potted culture test.The results indicated that Ca2+,by means of improving the stomatal conductivity of peanut leaves under low night temperature stress,may mitigate the decline of photosynthetic rate in the peanut leaves.The regulation with 15 mmol L-1CaCl 2(Ca15) was the most effective,compared with other treatments.Subsequently,the improvement of Ca2+on peanut photosynthesis under low night temperature stress was validated further through spraying with Ca15,Ca2+chelator(ethylene glycol bis(2-aminoethyl) tetraacetic acid; EGTA) and calmodulin antagonists(trifluonerazine; TFP).And CaM(Ca2+-modulin) played an important role in the nutritional signal transduction for Ca2+mitigating photosynthesis limitations in peanuts under low night temperature stress. 展开更多
关键词 PEANUT Ca2+ low night temperature stress PHOTOSYNTHESIS
下载PDF
Effects of Increased Night Temperature on Cellulose Synthesis and the Activity of Sucrose Metabolism Enzymes in Cotton Fiber 被引量:3
2
作者 TIAN Jing-shan HU Yuan-yuan +5 位作者 GAN Xiu-xia ZHANG Ya-li HU Xiao-bing GOU Ling LUO Hong-hai ZHANG Wang-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第6期979-988,共10页
Temperature is one of the key factors that influence cotton fiber synthesis at the late growth stage of cotton. In this paper, using two early-maturing cotton varieties as experimental materials, night temperature inc... Temperature is one of the key factors that influence cotton fiber synthesis at the late growth stage of cotton. In this paper, using two early-maturing cotton varieties as experimental materials, night temperature increase was stimulated in the field using far-infrared quartz tubes set in semi-mobile incubators and compared with the normal night temperatures (control) in order to investigate the effects of night temperature on the cotton fiber cellulose synthesis during secondary wall thickening. The results showed that the activity of sucrose synthase (SuSy) and sucrose phosphate synthase (SPS) quickly increased and remained constant during the development of cotton fiber, while the activity of acid invertase (AI) and alkaline invertase (NI) decreased, increased night temperatures prompted the rapid transformation of sugar, and all the available sucrose fully converted into cellulose. With night temperature increasing treatment, an increase in SuSy activity and concentration of sucrose indicate more sucrose converted into UDPG (uridin diphosphate-glucose) during the early and late stages of cotton fiber development. Furthermore, SPS activity and the increased concentration of fructose accelerated fructose degradation and reduced the inhibition of fructose to SuSy; maintaining higher value of allocation proportion of invertase and sucrose during the early development stages of cotton fiber, which was propitious to supply a greater carbon source and energy for cellulose synthesis. Therefore, the minimum temperature in the nightime was a major factor correlated with the activity of sucrose metabolism enzymes in cotton fiber. Consequently, soluble sugar transformation and cellulose accumulation were closely associated with the minimum night temperature. 展开更多
关键词 cotton fiber night temperature sucrose metabolism enzyme activity
下载PDF
The Effect of High Day and Low Night Temperature on Pollen Production, Pollen Germination and Postharvest Quality of Tomatoes 被引量:2
3
作者 B.Khanal A.Suthaparan +3 位作者 A.B.Hückstadt A.B.Wold Leiv Mortensen H.R.Gislerod 《American Journal of Plant Sciences》 2013年第7期19-25,共7页
Temperature integration where high day temperatures are compensated by lower night temperatures is one strategy that can be used to reduce energy consumption in greenhouses. Crop tolerance to temperature variation is ... Temperature integration where high day temperatures are compensated by lower night temperatures is one strategy that can be used to reduce energy consumption in greenhouses. Crop tolerance to temperature variation is a prerequisite for using such a strategy. Greenhouse experiments were conducted on tomatoes cvs, Capricia, Mecano and Cederico in order to investigate the effect of different day/night temperature regimes (24/17, 27/14 and 30/11℃) where the same mean temperature was maintained for the production and germination of pollen. In addition, fruit quality as determined by fruit firmness, dry matter content, soluble solids, titratable acids, and pH was examined at harvest and after seven and 14 days of storage. The 30/11℃ treatment significantly increased pollen production and germination compared to the 24/17℃ treatment, while the 27/14℃ treatment was generally in between the other two treatments. Fruits grown at the 27/14℃ treatment were significantly firmer, while fruits grown at 24/17℃ had higher dry matter content, soluble solids, and titratable acids compared to the other treatments. There were significant differences between cultivars with respect to firmness, dry matter, titratable acidity, and pH. The quality of the fruits changed during storage, but the storability of the tomatoes was not affected by preharvest temperature treatments. The overall conclusion was that the 27/14℃ treatment was superior to the other two temperature treatments with respect to the studied parameters. 展开更多
关键词 Daily Mean temperature Day temperature(DT) night temperature(NT) POLLEN temperature Integration Dry Matter pH Titratable Acids Soluble Solids POSTHARVEST TOMATO
下载PDF
The Effect of Low Night and High Day Temperatures on Photosynthesis in Tomato
4
作者 Arne B.Hückstadt A.Suthaparan +1 位作者 L.M.Mortensen H.R.Gislerod 《American Journal of Plant Sciences》 2013年第12期2323-2331,共9页
If low night temperatures can be combined with high day temperatures, providing optimal growth conditions for plants, a significant energy saving can be achieved in greenhouses. Lowering the night temperature from 18&... If low night temperatures can be combined with high day temperatures, providing optimal growth conditions for plants, a significant energy saving can be achieved in greenhouses. Lowering the night temperature from 18°C to 10°C-11°C for 8 h had no negative effect on the CO2 exchange rate (CER) during the following light period in tomato. This was found both in plants grown in artificial light only or in combination with daylight. Allowing the temperature to increase from 20°C to about 40°C, in parallel with an increasing solar photon flux density (PFD) from 0 up to about 800 μmol·m-2·s-1 in the greenhouse during summer, progressively increased CER when the CO2 concentration was maintained at 900 μmol·mol-1. At 400 μmol·mol-1 CO2, maximum CER was reached at about 600 μmol·m-2·s-1 PFD combined with a temperature of 32°C, and leveled out with a further increase in PFD and temperature. Maximum CER at high CO2 concentration was around 100% higher than at low CO2 level. Under early autumn conditions, CER increased up to about 500 μmol·m-2·s-1 PFD/32°C at low CO2 and up to about 600 μmol·m-2·s-1 PFD/35°C at high CO2. An elevated CO2 level doubled the CER in this experiment as well. Measurements of chlorophyll fluorescence showed no effect of low night temperature, high day temperature or CO2 concentration on the quantum yield of photosynthesis, indicating that no treatment negatively affected the efficiency of the photosynthetic apparatus. The results showed that low night temperatures may be combined with very high day temperatures without any loss of daily photosynthesis particularly in a CO2 enriched atmosphere. If this can be combined with normal plant development and no negative effects on the yield, significant energy savings can be achieved in greenhouses. 展开更多
关键词 Carbon Exchange Rate(CER) Chlorophyll Fluorescence CO2 Concentration Day temperature night temperature Photon Flux Density(PFD) Solanum lycopersicon L.
下载PDF
Growth promotion of interspecific hybrid embryos between Cucumis anguria and Melon(C. melo) by fruit heating
5
作者 Yuichi Matsumoto Mako Tsunamoto 《Horticultural Plant Journal》 SCIE CSCD 2022年第2期215-220,共6页
Wild species of the genus Cucumis, such as C. anguria, are resistant to various melon(C. melo) diseases such as Fusarium wilt race 1.2 and are anticipated as genetic resources of melon. However, in the interspecific c... Wild species of the genus Cucumis, such as C. anguria, are resistant to various melon(C. melo) diseases such as Fusarium wilt race 1.2 and are anticipated as genetic resources of melon. However, in the interspecific crosses between C. anguria and melon, the abortion of the embryos was observed in the early growth stage and could not be regenerated even when cultured. Therefore, for embryo rescue, it is necessary to promote embryo growth during abortion occurrence. This study investigated the effects of fruit heating on embryo growth in interspecific hybrids of C. anguria and melon. In the heating device, the minimum night temperature around the fruit was maintained above 21.5 °C. The ovule grain area of C. anguria × MR-1 with fruit heating was significantly enlarged compared to that without fruit-heating. It was also significantly enlarged compared with the ovule grain area of C. anguria self-pollination. Although, in C. anguria × MR-1 without fruit-heating, no embryo was observed until 10 days after pollination(DAP), and pre-embryos were observed at 13 DAP. Conversely, in C. anguria × MR-1 with fruit-heating, pre-embryos were even observed at 10 DAP. These results suggest that the possibility of embryo or ovule culture regeneration has increased due to embryo growth promotion. 展开更多
关键词 Cucumis anguria L. Interspecific cross MELON night temperature Ovule area
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部