从极大子群、中心主因子和正规子群的G 主列的角度来讨论有限幂零群,获得了有限幂零群的若干新刻划.设M是有限群G的任一极大子群,H G.令 G=G/Φ(G),则G是幂零群当且仅当下列条件之一成立:(1)如H≤\M,则H∩M G且H/H∩M≤Z(G/H∩M);(2)如H...从极大子群、中心主因子和正规子群的G 主列的角度来讨论有限幂零群,获得了有限幂零群的若干新刻划.设M是有限群G的任一极大子群,H G.令 G=G/Φ(G),则G是幂零群当且仅当下列条件之一成立:(1)如H≤\M,则H∩M G且H/H∩M≤Z(G/H∩M);(2)如H≤\M,则M≤CG(H/H∩M);(3)如H≤\M,则H≤CG(M/H∩M);(4)如H≤\M,则M补于G的一个中心主因子;(5)F( G)有一个 G 主列,其中每个主因子都是 G中心的且CG(F( G))可解;(6)Soc( G)有一个 G 主列,其中每个主因子都是 G 中心的;(7)K∞(G)≤H,H/Φ(H)有一个 G 主列其中每个主因子都是 G 中心的;(8)HCG(H)≤Z∞(G).展开更多
文摘从极大子群、中心主因子和正规子群的G 主列的角度来讨论有限幂零群,获得了有限幂零群的若干新刻划.设M是有限群G的任一极大子群,H G.令 G=G/Φ(G),则G是幂零群当且仅当下列条件之一成立:(1)如H≤\M,则H∩M G且H/H∩M≤Z(G/H∩M);(2)如H≤\M,则M≤CG(H/H∩M);(3)如H≤\M,则H≤CG(M/H∩M);(4)如H≤\M,则M补于G的一个中心主因子;(5)F( G)有一个 G 主列,其中每个主因子都是 G中心的且CG(F( G))可解;(6)Soc( G)有一个 G 主列,其中每个主因子都是 G 中心的;(7)K∞(G)≤H,H/Φ(H)有一个 G 主列其中每个主因子都是 G 中心的;(8)HCG(H)≤Z∞(G).