Nimonic 80A is a nickel-chromium alloy which is strengthened by additions of titanium and aluminium. The alloy is used for high temperature, high strength applications. Wire shaped Nimonic 80A samples are resistively ...Nimonic 80A is a nickel-chromium alloy which is strengthened by additions of titanium and aluminium. The alloy is used for high temperature, high strength applications. Wire shaped Nimonic 80A samples are resistively volume heated as part of a fast capacitor discharge circuit. Time resolved measurements with sub-μs resolution of current through the specimen are performed with a Pearson probe, voltage drop across the specimen is measured with knife-edge contacts and ohmic voltage dividers and the radiance temperature of the sample with a pyrometer. These measurements allow to determine heat of fusion as well as heat capacity and electrical resistivity at initial geometry of Nimonic 80A as a function of temperature in the solid and in the liquid phase up to 2400 K.展开更多
To deeply understand and even describe the evolutions of the low-energy twin boundary density(BLDΣ3n)in a thermal-plastic deformation process,an improved twin density model as a function of average grain size and sto...To deeply understand and even describe the evolutions of the low-energy twin boundary density(BLDΣ3n)in a thermal-plastic deformation process,an improved twin density model as a function of average grain size and stored energy is developed.For Nimonic 80A superalloy,the model is solved based on the EBSD statistical results of grain size and BLDΣ3n in the specimens compressed at temperatures of 1273−1423 K and strain rates of 0.001−10 s−1.The corresponding relationships of BLDΣ3n with stored energy and grain size varying with temperature and strain rate are clarified by the superimposed contour plot maps.It is summarized that BLDΣ3n increases with increasing stored energy and decreasing grain size,and higher BLDΣ3n with finer grains corresponds with lower temperatures and higher strain rates.Such relationships are described by the improved twin density model,and the prediction tolerance of the solved model is limited in 2.8%.展开更多
基金This work was financially supported by the Austrian "Forschungsfrderungsgesellschaft mbH", Krntner Strasse 21-23, 1010 Vienna, under contract No. 810999.
文摘Nimonic 80A is a nickel-chromium alloy which is strengthened by additions of titanium and aluminium. The alloy is used for high temperature, high strength applications. Wire shaped Nimonic 80A samples are resistively volume heated as part of a fast capacitor discharge circuit. Time resolved measurements with sub-μs resolution of current through the specimen are performed with a Pearson probe, voltage drop across the specimen is measured with knife-edge contacts and ohmic voltage dividers and the radiance temperature of the sample with a pyrometer. These measurements allow to determine heat of fusion as well as heat capacity and electrical resistivity at initial geometry of Nimonic 80A as a function of temperature in the solid and in the liquid phase up to 2400 K.
基金the financial supports from Chongqing Basic Research and Frontier Exploration Program, China (cstc2018jcyj AX0459)the Fundamental Research Funds for the Central Universities, China (2019CDQYTM027, 2019CDJGFCL003, 2018CDPTCG0001-6)Open Fund of State Key Laboratory of Materials Processing and Die & Mould Technology, China (P2020-001)
文摘To deeply understand and even describe the evolutions of the low-energy twin boundary density(BLDΣ3n)in a thermal-plastic deformation process,an improved twin density model as a function of average grain size and stored energy is developed.For Nimonic 80A superalloy,the model is solved based on the EBSD statistical results of grain size and BLDΣ3n in the specimens compressed at temperatures of 1273−1423 K and strain rates of 0.001−10 s−1.The corresponding relationships of BLDΣ3n with stored energy and grain size varying with temperature and strain rate are clarified by the superimposed contour plot maps.It is summarized that BLDΣ3n increases with increasing stored energy and decreasing grain size,and higher BLDΣ3n with finer grains corresponds with lower temperatures and higher strain rates.Such relationships are described by the improved twin density model,and the prediction tolerance of the solved model is limited in 2.8%.