Depth-dependent distribution patterns of bacterial and archaeal communities in deep sea water column around the Ninetyeast Ridge in the Indian Ocean were investigated using 16S rRNA gene profiling.Sampling was conduct...Depth-dependent distribution patterns of bacterial and archaeal communities in deep sea water column around the Ninetyeast Ridge in the Indian Ocean were investigated using 16S rRNA gene profiling.Sampling was conducted at the northern Ninetyeast Ridge(1°59.89′N–9°59.70′S,87°58.90′E–88°00.03′E)from September to November 2016 where samples were collected from the bathyal(1000 m)to bathypelagic depths(>4000 m)in four different stations.A total of 1565405 clean data falling into 6712 bacterial OTUs and 1452727 clean data falling into 806 archaeal OTUs based on 97%similarity level were analyzed.Most of the bacterial 16S rRNA gene sequences were affiliated with Gammaproteobacteria,followed by Alphaproteobacteria and Bacteroidia.The archaeal 16S rRNA gene sequences mostly affiliated to Nitrososphaeria(Thaumarchaeota)dominated with relative abundances ranging from 52.68%to 97.2%,followed by Thermoplasmata(Euryarchaeota).Vertical partitioning of bacterial and archaeal communities among different water layers was observed.Canonical correspondence analysis(CCA)and Spearman’s correlations revealed that depth(P=0.003),dissolved oxygen(P=0.019),and nitrite(P=0.033)were the main environmental factors affecting bacterial community structure at genus level in the Ninetyeast Ridge.On the other hand,the first two CCA axes accounted for 74.4%of the explained total variance,it seems that the archaeal communities at genus level were heavily influenced by the environmental variables including depth,dissolved oxygen(DO),nitrite,salinity,phosphate,ammonia,nitrate,and silicate,but none of them exhibited any significant correlation on the structuring(P>0.1).展开更多
Although the Indo-Australian plate near the Ninetyeast Ridge is important for understanding the formation of new plate boundaries, its tectonic problems are complex and most of them are poorly known. This paper made a...Although the Indo-Australian plate near the Ninetyeast Ridge is important for understanding the formation of new plate boundaries, its tectonic problems are complex and most of them are poorly known. This paper made a detailed tectonic analysis based on the data of bathymetry, gravity and magnetics. Bathymetry and gravity maps show morphological features of many folds, which are related to the intraplate deformation of the Indo-Australian plate due to the collision between the Indian and Asian plates. Gravity anomalies show the structure of fracture zones, which are caused by the seafloor spreading and transform faulting. The characteristics of the folds and fracture zones are consistent with the hypothesis that diffuse plate boundaries and redefined plate components would occur within the Indo-Australian plate. In addition, compiled magnetic data demonstrate magnetic lineations, abandoned spreading centers, southward ridge jumps and plate motions. These features provide useful information for rebuilding the tectonic evolution history of the study area. Magnetic anomalies suggest that an additional plate boundary of transform fault type is developing.展开更多
Although the microbial diversity of the Indian Ocean has been extensively investigated,little is known about the community composition of microbes in the Southern Indian Ocean.In the present study,we divided 60 water ...Although the microbial diversity of the Indian Ocean has been extensively investigated,little is known about the community composition of microbes in the Southern Indian Ocean.In the present study,we divided 60 water column samples on the Ninety-East Ridge(NER)into fi ve water masses according to the temperature-salinity curves.We presented,for the fi rst time,a full description of the microbial biodiversity on NER through high-throughput amplicon sequencing approach,including bacteria,archaea,and fungi.We found that bacteria exhibited higher richness and diversity than archaea and fungi across the water masses on NER.More importantly,each water mass on NER featured distinct prokaryotic microbial communities,as indicated by the results of non-metric multidimensional scaling.In contrast,fungi were eurybathic across the water masses.Redundancy analysis results demonstrated that environmental factors might play a pivotal role in the formation and stability of prokaryotic communities in each water mass,especially that of archaea.In addition,indicator species might be used as fi ngerprints to identify corresponding water masses on NER.These results provide new insights into the vertical distribution,structure,and diversity of microorganisms on NER from the perspective of water mass.展开更多
The Ninety-East Ridge(NER)is located in the semioceanic to oceanic region of the southern Bengal Fan in the Northeast Indian Ocean.The sedimentary environment,ocean currents,and scientific issues related to climate ch...The Ninety-East Ridge(NER)is located in the semioceanic to oceanic region of the southern Bengal Fan in the Northeast Indian Ocean.The sedimentary environment,ocean currents,and scientific issues related to climate change have always been the focus of scientists.To well understand the sedimentary environment of the sea area,we studied the modern sedimentary environment of the NER by analyzing the redox-sensitive trace elements(RSEs)and biomarkers in the surface sediments of the northern region and both sides of the NER and the mechanism of their formation.The ratios of Mo/U(average 2.22),(Cu+Mo)/Zn(average 1.51),and the results ofδCe<1 of the sediment samples,all indicate the reduction of the sedimentary environment.In addition,the ratio of pristane(Pr)to phytane(Ph),C30diahopane to C30 hopane,and diasterane to sterane were low in all samples,on average of 1.03,0.9,and 0.33,respectively.The analysis of RSE and biomarker data revealed that the sedimentary environment on seabed of the NER is generally a rare low-oxygen reduction environment.Through the analysis of sediment characteristics,material sources,and ocean currents,we preliminarily constructed a genetic model for the low-oxygen reducing environment of surface sediments in the NER.We believe that the low-oxygen reduction environment of surface sediment in the NER could be influenced by multiple factors,such as terrestrial input of materials,productivity at sea surface,and sediment particle size.展开更多
In recent years,great earthquakes occurred within the Wharton Basin in the eastern Indian Ocean,and they have been associa-ted with active faulting on the ancient oceanic crust.Large seismogenic faults were thought to...In recent years,great earthquakes occurred within the Wharton Basin in the eastern Indian Ocean,and they have been associa-ted with active faulting on the ancient oceanic crust.Large seismogenic faults were thought to be the fault reactivation on the ancient oceanic crust,but these phenomena are still unclear and require examination.This study used high-quality multibeam bathymetry and multichannel seismic data collected over the northern Ninetyeast Ridge to investigate detailed fault geometry,structure,and activity.We recognized 12 large linear active faults by integrating bathymetry maps and multichannel seismic reflection profiles.Our results showed that these faults have high angles,and they all displaced the basement and propagated to the seafloor with distinct fault scarps.They trended NWW-SEE with a spacing of 10–40km and were parallel to each other and the nearby subfault of the 2012 great intraplate earthquake,suggesting similar stress fields.These faults are also in agreement with the orientations of magnetic isochrons,implying their formation by seafloor spreading.Furthermore,regarding the strike-slip focal mechanism of 2012 earthquakes,we proposed that these faults were created early by a normal spreading process and then evolved into a strike-slip pattern since the ancient oceanic crust ap-proached the subduction zones.展开更多
基金Supported by the China Ocean Mineral Resources Research and Development Association Program(Nos.DY135-E2-1-01,DY135-E2-4-00)the China Global Sea-Atmosphere Interaction Research Program(No.GASI-02-IND-STSsum)the S&T Innovation Project of Qingdao National Laboratory for Marine Science and Technology(No.2016ASKJ14)。
文摘Depth-dependent distribution patterns of bacterial and archaeal communities in deep sea water column around the Ninetyeast Ridge in the Indian Ocean were investigated using 16S rRNA gene profiling.Sampling was conducted at the northern Ninetyeast Ridge(1°59.89′N–9°59.70′S,87°58.90′E–88°00.03′E)from September to November 2016 where samples were collected from the bathyal(1000 m)to bathypelagic depths(>4000 m)in four different stations.A total of 1565405 clean data falling into 6712 bacterial OTUs and 1452727 clean data falling into 806 archaeal OTUs based on 97%similarity level were analyzed.Most of the bacterial 16S rRNA gene sequences were affiliated with Gammaproteobacteria,followed by Alphaproteobacteria and Bacteroidia.The archaeal 16S rRNA gene sequences mostly affiliated to Nitrososphaeria(Thaumarchaeota)dominated with relative abundances ranging from 52.68%to 97.2%,followed by Thermoplasmata(Euryarchaeota).Vertical partitioning of bacterial and archaeal communities among different water layers was observed.Canonical correspondence analysis(CCA)and Spearman’s correlations revealed that depth(P=0.003),dissolved oxygen(P=0.019),and nitrite(P=0.033)were the main environmental factors affecting bacterial community structure at genus level in the Ninetyeast Ridge.On the other hand,the first two CCA axes accounted for 74.4%of the explained total variance,it seems that the archaeal communities at genus level were heavily influenced by the environmental variables including depth,dissolved oxygen(DO),nitrite,salinity,phosphate,ammonia,nitrate,and silicate,but none of them exhibited any significant correlation on the structuring(P>0.1).
基金supported by the National Natural Science Foundation of China (Nos. 41606069 and 31500411)the Key Laboratory of Marginal Sea Geology, Chinese Academy of Sciences (MSGL15-04)+6 种基金the Key Laboratory of Marine Mineral Resources, Ministry of Land and Resources of China (No. KLMMR-2014-B-06)the Natural Science Foundation of Guangdong Province in China (No. 2015A030310374)the Director Grant for Oceanic technology of South China Sea Branch, State Oceanic Administration (1501)the Ministry of Human Resources and Social Security of China (50603-54)the Key Laboratory of Integrated Marine Monitoring and Applied Technologies for Harmful Algal Blooms, State Oceanic Administration (No. MATHAB201501)the Key Laboratory for Ecological Environment in Coastal Areas, State Oceanic Administration (201504)the Mariana Trench Project of the South China Sea Institute of Oceanology, Chinese Academy of Sciences
文摘Although the Indo-Australian plate near the Ninetyeast Ridge is important for understanding the formation of new plate boundaries, its tectonic problems are complex and most of them are poorly known. This paper made a detailed tectonic analysis based on the data of bathymetry, gravity and magnetics. Bathymetry and gravity maps show morphological features of many folds, which are related to the intraplate deformation of the Indo-Australian plate due to the collision between the Indian and Asian plates. Gravity anomalies show the structure of fracture zones, which are caused by the seafloor spreading and transform faulting. The characteristics of the folds and fracture zones are consistent with the hypothesis that diffuse plate boundaries and redefined plate components would occur within the Indo-Australian plate. In addition, compiled magnetic data demonstrate magnetic lineations, abandoned spreading centers, southward ridge jumps and plate motions. These features provide useful information for rebuilding the tectonic evolution history of the study area. Magnetic anomalies suggest that an additional plate boundary of transform fault type is developing.
基金Supported by the China Ocean Mineral Resources R&D Association(Nos.DY135-B2-11,DY135-E2-4)the National Natural Science Foundation of China(No.42076165)+2 种基金the Natural Science Foundation of Shandong Province(No.ZR2018MD017)the National Key Research and Development Program(No.2016YFC1402301)the Fundamental Research Funds for the Central Universities(No.201822009)。
文摘Although the microbial diversity of the Indian Ocean has been extensively investigated,little is known about the community composition of microbes in the Southern Indian Ocean.In the present study,we divided 60 water column samples on the Ninety-East Ridge(NER)into fi ve water masses according to the temperature-salinity curves.We presented,for the fi rst time,a full description of the microbial biodiversity on NER through high-throughput amplicon sequencing approach,including bacteria,archaea,and fungi.We found that bacteria exhibited higher richness and diversity than archaea and fungi across the water masses on NER.More importantly,each water mass on NER featured distinct prokaryotic microbial communities,as indicated by the results of non-metric multidimensional scaling.In contrast,fungi were eurybathic across the water masses.Redundancy analysis results demonstrated that environmental factors might play a pivotal role in the formation and stability of prokaryotic communities in each water mass,especially that of archaea.In addition,indicator species might be used as fi ngerprints to identify corresponding water masses on NER.These results provide new insights into the vertical distribution,structure,and diversity of microorganisms on NER from the perspective of water mass.
基金Supported by the Science and Technology Development Foundation of South China Sea Bureau,Ministry of Natural Resources,China(No.230204)the National Program on Global Change and Air-Sea Interaction(No.GASI-02-IND-CJ04)+1 种基金the Natural Science Foundation of Guangdong Province,China(No.2021A1515012589)the Key Technologies Research and Development Program of Guangzhou,Guangdong Province,China(No.2023B03J1379)。
文摘The Ninety-East Ridge(NER)is located in the semioceanic to oceanic region of the southern Bengal Fan in the Northeast Indian Ocean.The sedimentary environment,ocean currents,and scientific issues related to climate change have always been the focus of scientists.To well understand the sedimentary environment of the sea area,we studied the modern sedimentary environment of the NER by analyzing the redox-sensitive trace elements(RSEs)and biomarkers in the surface sediments of the northern region and both sides of the NER and the mechanism of their formation.The ratios of Mo/U(average 2.22),(Cu+Mo)/Zn(average 1.51),and the results ofδCe<1 of the sediment samples,all indicate the reduction of the sedimentary environment.In addition,the ratio of pristane(Pr)to phytane(Ph),C30diahopane to C30 hopane,and diasterane to sterane were low in all samples,on average of 1.03,0.9,and 0.33,respectively.The analysis of RSE and biomarker data revealed that the sedimentary environment on seabed of the NER is generally a rare low-oxygen reduction environment.Through the analysis of sediment characteristics,material sources,and ocean currents,we preliminarily constructed a genetic model for the low-oxygen reducing environment of surface sediments in the NER.We believe that the low-oxygen reduction environment of surface sediment in the NER could be influenced by multiple factors,such as terrestrial input of materials,productivity at sea surface,and sediment particle size.
基金supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515 020098)the Project of Science and Technology Department of Guangxi Zhuang Autonomous Region to Chen J. (No. 2019AC17008)+4 种基金the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (No. GML2019ZD0205)the National Natural Science Foundation of China (No. 41890813)the Chinese Academy of Sciences Project (Nos. 133244KYSB20180029, 131551KYSB20200 021, Y4SL021001, QYZDY-SSW-DQC005, ISEE2021PY03, and E1SL3C02)the Development Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences (No. 202207)the Guangdong Provincial Research and Development Program in Key Areas (No. 2020B1111520001)
文摘In recent years,great earthquakes occurred within the Wharton Basin in the eastern Indian Ocean,and they have been associa-ted with active faulting on the ancient oceanic crust.Large seismogenic faults were thought to be the fault reactivation on the ancient oceanic crust,but these phenomena are still unclear and require examination.This study used high-quality multibeam bathymetry and multichannel seismic data collected over the northern Ninetyeast Ridge to investigate detailed fault geometry,structure,and activity.We recognized 12 large linear active faults by integrating bathymetry maps and multichannel seismic reflection profiles.Our results showed that these faults have high angles,and they all displaced the basement and propagated to the seafloor with distinct fault scarps.They trended NWW-SEE with a spacing of 10–40km and were parallel to each other and the nearby subfault of the 2012 great intraplate earthquake,suggesting similar stress fields.These faults are also in agreement with the orientations of magnetic isochrons,implying their formation by seafloor spreading.Furthermore,regarding the strike-slip focal mechanism of 2012 earthquakes,we proposed that these faults were created early by a normal spreading process and then evolved into a strike-slip pattern since the ancient oceanic crust ap-proached the subduction zones.