Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological en...Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.展开更多
In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization a...In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization and industrialization as well as other intensified human activities,especially in arid and semi-arid areas.In the study,we chose the economic belt on the northern slope of the Tianshan Mountains(EBNSTM)in Xinjiang Uygur Autonomous Region of China as a case study.By collecting geographic data and statistical data from 2010 and 2020,we constructed an ecological resilience assessment model based on the ecosystem habitat quality(EHQ),ecosystem landscape stability(ELS),and ecosystem service value(ESV).Further,we analyzed the temporal and spatial variation characteristics of ecological resilience in the EBNSTM from 2010 to 2020 by spatial autocorrelation analysis,and explored its responses to climate change and human activities using the geographically weighted regression(GWR)model.The results showed that the ecological resilience of the EBNSTM was at a low level and increased from 0.2732 to 0.2773 during 2010–2020.The spatial autocorrelation analysis of ecological resilience exhibited a spatial heterogeneity characteristic of"high in the western region and low in the eastern region",and the spatial clustering trend was enhanced during the study period.Desert,Gobi and rapidly urbanized areas showed low level of ecological resilience,and oasis and mountain areas exhibited high level of ecological resilience.Climate factors had an important impact on ecological resilience.Specifically,average annual temperature and annual precipitation were the key climate factors that improved ecological resilience,while average annual evapotranspiration was the main factor that blocked ecological resilience.Among the human activity factors,the distance from the main road showed a negative correlation with ecological resilience.Both night light index and PM2.5 concentration were negatively correlated with ecological resilience in the areas with better ecological conditions,whereas in the areas with poorer ecological conditions,the correlations were positive.The research findings could provide a scientific reference for protecting the ecological environment and promoting the harmony and stability of the human-land relationship in arid and semi-arid areas.展开更多
The exploration of ecological safety in tourism sites can provide a concrete path for sustainable tourism development in a region.Based on the“Driver-Pressure-State-Impact-Response”(DPSIR)model,we constructed an ind...The exploration of ecological safety in tourism sites can provide a concrete path for sustainable tourism development in a region.Based on the“Driver-Pressure-State-Impact-Response”(DPSIR)model,we constructed an index system for the evaluation of tourism ecological security(TES)in the Silk Road Economic Belt(SREB)from 2005 to 2020.This index system was used to explore the characteristics of spatial and temporal dynamic evolution with the help of entropy weight TOPSIS method,dynamic index of TES and Markov probability transfer matrix,and a standard deviational ellipse(SDE)model and GM(1,1)model were constructed for spatial pattern analysis and prediction.The results indicate four key aspects of this system.(1)In terms of spatiotemporal evolution,the tourism ecological safety index(TESI)of the SREB increased,the TES levels of the northwestern and southwestern provinces and cities differed significantly,and the quality conditions of TES in the southwestern provinces and cities were better than in the northwest.(2)In terms of dynamic evolutionary characteristics,the speed of change at each level of the SREB was slow,but the level of TES has improved.The TES level has not shifted by leaps and bounds,and the shifts in the level type show“path dependence”and“self-locking”effects.(3)In terms of spatial and temporal distribution patterns,the spatial pattern of TES in the SREB is a“northwest-southeast”movement trend,and the spatial distribution appeared as“aggregation”from 2005 to 2020.The prediction results show that the center of gravity of TES in the SREB will shift to the southeast from 2025 to 2035,and the spatial spillover effect will be reduced.(4)In terms of driving factors,the number of star-rated hotels,and the amounts of industrial wastewater emissions,tourism foreign exchange earnings,forest coverage,and other parameters are the key factors affecting TES,and the booming tourism industry requires the interconnection and interpenetration of various factors.The results of this study can provide a reference for tourism development and ecological environmental protection in the Silk Road Economic Belt.展开更多
Young elm trees belt-pumpkin strip intercropping was studied to solve the actual problem of resource losses in the large barren area resulted from reconverting cultivated land into forest in the agro-pastoral ecotone ...Young elm trees belt-pumpkin strip intercropping was studied to solve the actual problem of resource losses in the large barren area resulted from reconverting cultivated land into forest in the agro-pastoral ecotone in northern China. The final objective was to realize effective utilization of the barren land with both ecological improvement and economic development. Field experiments were conducted together with laboratory analysis. The results indicated that the soil moisture level was remarkably increased in young elm trees belt-pumpkin strip intereropping because the pumpkin vines covered the gap between pumpkin planting-furrow and elm trees belt. The water use efficiency of the intercropping system was increased by 23.7-163.3% as compared with the single cropping. Elm trees belt-pumpkin strip intercropping changed the sequential succession trend of the grasses growing in the gap of the pumpkin planting-furrow. The annual grasses become the dominant vegetation. The nutritive value as fodder and yield of the annual grasses were also increased remarkably. The biomass of pumpkin, elm trees and grasses under intercropping increased by 24.4, 28.4 and 144.4%, respectively, as compared with those under single cropping. The land use efficiency was increased by 132%. It was also indicated that the soil erosion from the intercropping land was not increased due to pumpkin plantation. The differences in the soil erosion among intercropped area, elm trees belt and pumpkin strip with single cropping were not remarkable. Therefore, it was concluded that young elm trees belt-pumpkin strip intercropping is an effective way to utilize the barren land between the young elm trees belt and realize synergistic enhancement of ecological benefit and economic profit.展开更多
Building the Yangtze River Economic Belt(YREB)is one of China’s three national development policies in the new era.The ecological environment of the Yangtze River Economic Belt must be protected not only for regional...Building the Yangtze River Economic Belt(YREB)is one of China’s three national development policies in the new era.The ecological environment of the Yangtze River Economic Belt must be protected not only for regional economic development but also for regional ecological security and ecological progress in this region.This paper takes the ecological space of the Yangtze River Economic Belt as the research object,based on land use data in 2010 and 2015,and uses the FLUS model to simulate and predict the ecological space of the research area in 2035.The variation of the research area’s ecological space area and its four sub-zones has remarkable stability under diverse situations.Both the production space priority scenarios(S1)and living space priority scenarios(S2)saw a fall in ecological space area,with the former experiencing the highest reduction(a total reduction of 25,212 km^(2)).Under the ecological space priority scenarios(S3)and comprehensive space optimization scenario(S4),the ecological space area increased,and the ecological space area expanded even more under the former scenario(a total growth of 23,648 km^(2)).In Yunnan-Guizhou,the ecological space is relatively stable,with minimal signs of change.In Sichuan-Chongqing,the Sichuan Basin,Zoige Grassland,and Longmen Mountains were significant regions of area changes in ecological space.In the middle reaches of the Yangtze River,the ecological space changes mainly occur in the Wuyi Mountains,Mufu Mountains,and Dabie Mountains,as well as the surrounding waters of Dongting Lake.The Yangtze River Delta’s changes were mainly observed in the eastern Dabie Mountains and Jianghuai Hills.展开更多
The interactive effects of natural and human factors on ecosystems have been well studied, and the quantitative assessment of large-scale ecological vulnerability caused by natural and human factors is now one of the ...The interactive effects of natural and human factors on ecosystems have been well studied, and the quantitative assessment of large-scale ecological vulnerability caused by natural and human factors is now one of the most active topics in the ifeld. Taking the Guangxi Xijiang River Economic Belt in southwest China (GXEB) as a case study, we assess ecological vulnerability based on the Vulnerability Scoping Diagram (VSD) model. The indices system is decomposed into three sub objects, ten elements and 25 indicators layer by layer, which included factors from both natural and human ifelds. Results indicate that zones with lower, middle-lower, middle, middle-higher and higher vulnerability account for 11.31%, 22.63%, 27.60%, 24.39%, and 14.07%, respectively. The western and eastern parts of GXEB are more vulnerable than the central part and the mountain and urban areas are of higher vulnerability than the basins and river valleys. Compared with a vulnerability assessment based on natural factors only, it is concluded that human activities indeed cause the transition from naturally stable zones to vulnerable zones. The nature-dominated vulnerable zones are different with human-dominated ones in size and distribution, the latter being smaller, more scattered and distributed in urban areas and their surroundings. About 53%of total construction land is distributed in zones with middle and middle-higher ecological vulnerability;less vulnerable zones should attract construction in the future. Relevant suggestions are proposed on how to reduce vulnerability according to inducing factors. The VSD model has a signiifcant advantage in the quantitative evaluation of ecological vulnerability, but is insufficient to distinguish nature- or human-dominated vulnerability quantitatively.展开更多
基金supported by the Hebei Province Cultural and Artistic Science Planning and Tourism Research Project[Grant No.HB22-ZD002].
文摘Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.
基金supported by the Third Xinjiang Scientific Expedition Program (2021xjkk0905).
文摘In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization and industrialization as well as other intensified human activities,especially in arid and semi-arid areas.In the study,we chose the economic belt on the northern slope of the Tianshan Mountains(EBNSTM)in Xinjiang Uygur Autonomous Region of China as a case study.By collecting geographic data and statistical data from 2010 and 2020,we constructed an ecological resilience assessment model based on the ecosystem habitat quality(EHQ),ecosystem landscape stability(ELS),and ecosystem service value(ESV).Further,we analyzed the temporal and spatial variation characteristics of ecological resilience in the EBNSTM from 2010 to 2020 by spatial autocorrelation analysis,and explored its responses to climate change and human activities using the geographically weighted regression(GWR)model.The results showed that the ecological resilience of the EBNSTM was at a low level and increased from 0.2732 to 0.2773 during 2010–2020.The spatial autocorrelation analysis of ecological resilience exhibited a spatial heterogeneity characteristic of"high in the western region and low in the eastern region",and the spatial clustering trend was enhanced during the study period.Desert,Gobi and rapidly urbanized areas showed low level of ecological resilience,and oasis and mountain areas exhibited high level of ecological resilience.Climate factors had an important impact on ecological resilience.Specifically,average annual temperature and annual precipitation were the key climate factors that improved ecological resilience,while average annual evapotranspiration was the main factor that blocked ecological resilience.Among the human activity factors,the distance from the main road showed a negative correlation with ecological resilience.Both night light index and PM2.5 concentration were negatively correlated with ecological resilience in the areas with better ecological conditions,whereas in the areas with poorer ecological conditions,the correlations were positive.The research findings could provide a scientific reference for protecting the ecological environment and promoting the harmony and stability of the human-land relationship in arid and semi-arid areas.
基金The Scientific Research Fund Project of Yunnan Education Department(2021J0592)The Yunnan University of Finance and EconomicsProgramme(2022D13)The Graduate Student Innovation Fund Project of Yunnan University of Finance and Economics(2022YUFEYC10).
文摘The exploration of ecological safety in tourism sites can provide a concrete path for sustainable tourism development in a region.Based on the“Driver-Pressure-State-Impact-Response”(DPSIR)model,we constructed an index system for the evaluation of tourism ecological security(TES)in the Silk Road Economic Belt(SREB)from 2005 to 2020.This index system was used to explore the characteristics of spatial and temporal dynamic evolution with the help of entropy weight TOPSIS method,dynamic index of TES and Markov probability transfer matrix,and a standard deviational ellipse(SDE)model and GM(1,1)model were constructed for spatial pattern analysis and prediction.The results indicate four key aspects of this system.(1)In terms of spatiotemporal evolution,the tourism ecological safety index(TESI)of the SREB increased,the TES levels of the northwestern and southwestern provinces and cities differed significantly,and the quality conditions of TES in the southwestern provinces and cities were better than in the northwest.(2)In terms of dynamic evolutionary characteristics,the speed of change at each level of the SREB was slow,but the level of TES has improved.The TES level has not shifted by leaps and bounds,and the shifts in the level type show“path dependence”and“self-locking”effects.(3)In terms of spatial and temporal distribution patterns,the spatial pattern of TES in the SREB is a“northwest-southeast”movement trend,and the spatial distribution appeared as“aggregation”from 2005 to 2020.The prediction results show that the center of gravity of TES in the SREB will shift to the southeast from 2025 to 2035,and the spatial spillover effect will be reduced.(4)In terms of driving factors,the number of star-rated hotels,and the amounts of industrial wastewater emissions,tourism foreign exchange earnings,forest coverage,and other parameters are the key factors affecting TES,and the booming tourism industry requires the interconnection and interpenetration of various factors.The results of this study can provide a reference for tourism development and ecological environmental protection in the Silk Road Economic Belt.
基金supported by the National Key Technologies R&D Program of China during the 11th Five-Year Plan period(2006BAD15B05)the Science and Technology R&D Project of Hebei Province,China(06220901D)
文摘Young elm trees belt-pumpkin strip intercropping was studied to solve the actual problem of resource losses in the large barren area resulted from reconverting cultivated land into forest in the agro-pastoral ecotone in northern China. The final objective was to realize effective utilization of the barren land with both ecological improvement and economic development. Field experiments were conducted together with laboratory analysis. The results indicated that the soil moisture level was remarkably increased in young elm trees belt-pumpkin strip intereropping because the pumpkin vines covered the gap between pumpkin planting-furrow and elm trees belt. The water use efficiency of the intercropping system was increased by 23.7-163.3% as compared with the single cropping. Elm trees belt-pumpkin strip intercropping changed the sequential succession trend of the grasses growing in the gap of the pumpkin planting-furrow. The annual grasses become the dominant vegetation. The nutritive value as fodder and yield of the annual grasses were also increased remarkably. The biomass of pumpkin, elm trees and grasses under intercropping increased by 24.4, 28.4 and 144.4%, respectively, as compared with those under single cropping. The land use efficiency was increased by 132%. It was also indicated that the soil erosion from the intercropping land was not increased due to pumpkin plantation. The differences in the soil erosion among intercropped area, elm trees belt and pumpkin strip with single cropping were not remarkable. Therefore, it was concluded that young elm trees belt-pumpkin strip intercropping is an effective way to utilize the barren land between the young elm trees belt and realize synergistic enhancement of ecological benefit and economic profit.
基金The Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan),No.CUG2018123。
文摘Building the Yangtze River Economic Belt(YREB)is one of China’s three national development policies in the new era.The ecological environment of the Yangtze River Economic Belt must be protected not only for regional economic development but also for regional ecological security and ecological progress in this region.This paper takes the ecological space of the Yangtze River Economic Belt as the research object,based on land use data in 2010 and 2015,and uses the FLUS model to simulate and predict the ecological space of the research area in 2035.The variation of the research area’s ecological space area and its four sub-zones has remarkable stability under diverse situations.Both the production space priority scenarios(S1)and living space priority scenarios(S2)saw a fall in ecological space area,with the former experiencing the highest reduction(a total reduction of 25,212 km^(2)).Under the ecological space priority scenarios(S3)and comprehensive space optimization scenario(S4),the ecological space area increased,and the ecological space area expanded even more under the former scenario(a total growth of 23,648 km^(2)).In Yunnan-Guizhou,the ecological space is relatively stable,with minimal signs of change.In Sichuan-Chongqing,the Sichuan Basin,Zoige Grassland,and Longmen Mountains were significant regions of area changes in ecological space.In the middle reaches of the Yangtze River,the ecological space changes mainly occur in the Wuyi Mountains,Mufu Mountains,and Dabie Mountains,as well as the surrounding waters of Dongting Lake.The Yangtze River Delta’s changes were mainly observed in the eastern Dabie Mountains and Jianghuai Hills.
基金National Natural Science Foundation of China(41201110)Young Talents Foundation of Nanjing Institute of Geography and Limnology of CAS(NIGLAS2011QD03)
文摘The interactive effects of natural and human factors on ecosystems have been well studied, and the quantitative assessment of large-scale ecological vulnerability caused by natural and human factors is now one of the most active topics in the ifeld. Taking the Guangxi Xijiang River Economic Belt in southwest China (GXEB) as a case study, we assess ecological vulnerability based on the Vulnerability Scoping Diagram (VSD) model. The indices system is decomposed into three sub objects, ten elements and 25 indicators layer by layer, which included factors from both natural and human ifelds. Results indicate that zones with lower, middle-lower, middle, middle-higher and higher vulnerability account for 11.31%, 22.63%, 27.60%, 24.39%, and 14.07%, respectively. The western and eastern parts of GXEB are more vulnerable than the central part and the mountain and urban areas are of higher vulnerability than the basins and river valleys. Compared with a vulnerability assessment based on natural factors only, it is concluded that human activities indeed cause the transition from naturally stable zones to vulnerable zones. The nature-dominated vulnerable zones are different with human-dominated ones in size and distribution, the latter being smaller, more scattered and distributed in urban areas and their surroundings. About 53%of total construction land is distributed in zones with middle and middle-higher ecological vulnerability;less vulnerable zones should attract construction in the future. Relevant suggestions are proposed on how to reduce vulnerability according to inducing factors. The VSD model has a signiifcant advantage in the quantitative evaluation of ecological vulnerability, but is insufficient to distinguish nature- or human-dominated vulnerability quantitatively.