Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, ...Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, it is difficult to verify simulations of dislocation theory. In this study, it is shown that the GS15 gravimeter, located 99.5 km from the epicenter of the Ms7.0 Lushan earthquake on April 20, 2013 at 08 : 04 UTC + 8, showed the influence of the earthquake from 2013-04-16 to 2013-04-26 after a time calibration, tide correc- tions, drift correction, period correction and relaxation correction were applied to its data. The post-seismic relaxation process of the spring in the gravimeter took approximately 430 minutes and showed a 2. 5 ×10^-8 ms^-2 gravity change. After correcting for the relaxation process, it is shown that a coseismic gravity change of approximately +0.59 +-0. 4 ~ 10-Sms-2 was observed by the GS15 gravimeter; this agrees with the simulated gravity change of approximately 0.31 ~ 10 -8 ms-2. The rate of the coseismie gravity change and the coseismic vertical displacement, as measured by one-second and one-day sampling interval GPS units, is also consistent with the theoretical rate of change. Therefore, the GS15 gravimeter at the Pixian Station observed a coseismic gravity change after the Ms7.0 Lushan earthquake. This and similar measurements could be applied to test and confirm the theory used for these simulations.展开更多
After the Yutian M_S7.3 earthquake,the authors instantly collected 1Hz high frequency data of the 4 reference stations within 350 km around the epicenter,and calculated the GNSS data with the TRACK module. The results...After the Yutian M_S7.3 earthquake,the authors instantly collected 1Hz high frequency data of the 4 reference stations within 350 km around the epicenter,and calculated the GNSS data with the TRACK module. The results showed that:( 1) The co-seismic displacement of Yutian station,about 54 km from the epicenter,is the most obvious,particularly in the EW component,with a change of about 52.5 ± 11mm,which is more than three times the mean-square error of calculating precision.( 2) In the Yutian reference station,the biggest variation in the EW component appeared within 1 minute after the earthquake.( 3) The change in the NS component is not great.展开更多
The Ms7. 3 earthquake occurred in Yutian, Xinjiang on February 12, 2014. Based on seismic waveform data before the earthquake and aftershocks of the earthquake sequence, which were recorded by the Xinjiang Regional Di...The Ms7. 3 earthquake occurred in Yutian, Xinjiang on February 12, 2014. Based on seismic waveform data before the earthquake and aftershocks of the earthquake sequence, which were recorded by the Xinjiang Regional Digital Seismic Network, this paper corrected instrument response, propagation path and site response of the S-wave recording spectra. We then calculated with genetic algorithms, on the basis of the Brune model, the source parameters of the 102 M, ≥ 3. 0 Yutian earthquake sequence, seismic moment, apparent stress and corner frequency. The results show that, seismic moment of the earthquake sequence is between 3. 46 × 10^11 -2. 08×10^15N.m, apparent stress is between 1.48 × 10^5 -1.16 ×10^6Pa, mean stress level is 0. 31MPa, and corner frequency is between 1.4-7. 1Hz in the range of 3. 0 -5. 0. By analyzing the apparent stress and corner frequency variation with time, we obtain that apparent stress of earthquakes before the Yutian Ms7. 3 earthquake was significantly higher than the aftershock sequence, but the corner frequency was significantly lower than the aftershock sequence. Apparent stress was at a high level before the main shock, which shows that the main shock zone accumulated higher stress, and then the apparent stress was reduced. The main shock occurred in the process of slow increase. Because of the release of a large amount of stress, after the Ms7. 3 earthquake, the apparent stress was gradually reduced. That was the performance of low stress fracture of aftershocks.展开更多
On April 14, 2010, a devastating earthquake measured 7.1 on the Richter scale struck Yushu county, Qinghai Province, China. Field geological investigation and remote sensing interpretation show that this earthquake ge...On April 14, 2010, a devastating earthquake measured 7.1 on the Richter scale struck Yushu county, Qinghai Province, China. Field geological investigation and remote sensing interpretation show that this earthquake generated an inverse "L-shaped" surface rupture zone, approximately 50km long. The surface rupture zone can be divided into three segments. Between the northern and middle segments of the surface rupture, there is a 16km-long segment, where no rupture was observed. The middle and the southern segments are arranged in a left-step manner, and there are right-step en echelon ruptures developed in the stepovers. The seismogenic structure is the Yushu fault, which is dominated by strike-slip with a small amount of thrust component. The earthquake results from the differential movements between the southern Qiangtang Block and northern Bayan Har Block. The earthquake recurrence interval is 185a^108a. Along an approximately 20km-long part of the Garze-Yushu fault, between the southern surface rupture of Yushu Ms7. 1 earthquake and the 1896 earthquake, there is no surface rupture, its seismic risk needs further research.展开更多
From Octobet 1998 to January 1999,5 earthquakes ( M s≥5) occurred between Ninglang and Yanyuan counties (27°07′~27°12′N,100°40′~101°00′E area).They were situated in 140km southwest of the Xi...From Octobet 1998 to January 1999,5 earthquakes ( M s≥5) occurred between Ninglang and Yanyuan counties (27°07′~27°12′N,100°40′~101°00′E area).They were situated in 140km southwest of the Xichang.Among them,the largest one is M s 6 2 on November 19,1998.Based on small seismic data by the seismic remote sensing station of Xichang and the seismological station of Muli,and regional observation data,passing through careful observation and scientific analyses,we had made better forecasts before the earthquakes.That results obvious social benefits.By processing data of precursory earthquakes,such as,original observation data of total geomagnetic intensity from the station of Xichang,pressure capacitance stressometer and quartz horizaontal pendulum tiltmeter from the Xiaomiao station of Xichang,we summarized the sequence characteristics of the series earthquakes.The information about short\|term anomaly of gruond strain,total geomagnetic intensity and ground tilt before the earthquake is emphatically explained.展开更多
The regional tectonic background and characteristics of active faults of the Yutian MS7.3earthquake on February 12,2014 are discussed in this paper.After the analysis of the epicenter area of the MS7.3 earthquake in 2...The regional tectonic background and characteristics of active faults of the Yutian MS7.3earthquake on February 12,2014 are discussed in this paper.After the analysis of the epicenter area of the MS7.3 earthquake in 2014 and the focal mechanisms of the former strong earthquakes around it,the authors deduced that the seismogenic fault of the MS7.3earthquake is the east branch of the Ashikule fault.The MS7.3 earthquake in 2014 and the MS7.3 earthquake in 2008 are two strong earthquake events on the different sections of the Altun Tagh fault,where the fault behavior changes from sinistral slip to normal faulting because of the extensional tail effects in the southern end of the Altun Tagh fault.It is concluded that the two MS7.3 earthquakes have the same dynamic source,and the MS7.3earthquake in 2008 promoted the occurrence of the MS7.3 earthquake in 2014.Finally,we calculate the Coulomb stress change to the seismogenic fault of the MS7.3 earthquake in2014 from the MS7.3 earthquake in 2008 using the layered crust model.The result also shows that the MS7.3 earthquake in 2008 accelerated the occurrence of the MS7.3earthquake in 2014.展开更多
The February 12, 2014, Ms7. 3, earthquake in Yutian, Xinjiang, China, occurred as a result of shallow strike-slip faulting in the tectonicaUy complex region of the northern Tibetan Plateau, with a depth of 17kin. This...The February 12, 2014, Ms7. 3, earthquake in Yutian, Xinjiang, China, occurred as a result of shallow strike-slip faulting in the tectonicaUy complex region of the northern Tibetan Plateau, with a depth of 17kin. This earthquake occurred several hundred kilometers north of the convergent India-Eurasia plate boundary. The epicenter location of the Yutian earthquake, 36. 1° N, 82. 5° E, is ll0km north of Yutian County, Hotan Prefecture. A large number of aftershocks from ML2. 0 to ML3. 0 occurred until 12:00 o'clock, February 23, 2014 and the largest aftershock, Ms5. 7, occurred at 17:24 μm. , February 12, 2014. The b and h value of Yutian sequence are 0.70 and 1.29, respectively. The waiting time method reveals that the strong aftershocks above ML 4. 5 comply with a linear relationship, which is consistent with the characteristics of a mainshock-aftershock sequence. Furthermore, we calculate the source parameters and analyze the rupture process based on the empirical relationships for the Yutian earthquake, and the results indicate a frictional undershoot behavior in the dynamic source process of the Yutian earthquake, which is also in agreement with the lower and similar b values compared with the 2008 Ms 7.3 Yutian earthquake and the 2012 Ms 6. 2 Yutian earthquake.展开更多
This paper calculates the static stress changes generated by the Yushu M_S 7. 1 earthquake in Qinghai Province. On the basis of regional stress,we take account of the static stress change triggered by the Yushu M_S 7....This paper calculates the static stress changes generated by the Yushu M_S 7. 1 earthquake in Qinghai Province. On the basis of regional stress,we take account of the static stress change triggered by the Yushu M_S 7. 1 earthquake to find the optimally oriented fault planes,then calculate the Coulomb stress change on the optimally oriented fault plane. The results indicate that most of the aftershocks are triggered by the mainshock. The image of Coulomb stress changes is also in accord with regional earthquakes ( M_L ≥3. 0 ) distribution,but the value is lower than 0. 01MPa. In addition,this paper calculates the Coulomb stress changes in the case that the aftershock fault plane is the same as the main shock. Through comparison,we find that the image of Coulomb stress changes obtained using the "optimally oriented fault"approach is more consistent with the distribution of Yushu aftershocks and regional earthquakes.展开更多
The coseismic surface rupture zone of the seismogenic fault of the Ms7.1 Yushu earthquake includes three left-stepping main ruptures, striking 300°- 320°, in general. An approximately 2km-long en echelon ten...The coseismic surface rupture zone of the seismogenic fault of the Ms7.1 Yushu earthquake includes three left-stepping main ruptures, striking 300°- 320°, in general. An approximately 2km-long en echelon tension fissure zone was found at Longbao town. The main rupture in the northern part is about 16km long, about 9kin long in the middle part, and about 7km long in the southern part, with a total length of 34km. Each of the main ruptures consists of a series of en echelon sub-ruptures represented by a series of compression bulges alternating with tension fissures or by en echelon fissures. The rupture at Changusi, the southernmost of the ruptures, is characterized by vertical displacement, with a value of 50cm. The rupture zone shows left-lateral strike-slip characteristics. The maximal horizontal slip is on the northern main rupture, with a value of 1.8m.展开更多
The Yutian earthquake with M_S7.3 happened on February 12,2014. The precursor monitoring ability is weak in that area. We found tendency anomalies and middle- and short-term anomalies from metal pendulum tilt measurem...The Yutian earthquake with M_S7.3 happened on February 12,2014. The precursor monitoring ability is weak in that area. We found tendency anomalies and middle- and short-term anomalies from metal pendulum tilt measurements in Hotan seismic station before the earthquake. And we also compared the anomalies with that of the M_S7.3 Yutian earthquake on March 21,2008. The tendency anomalies measured by the metal pendulum tiltmeter appeared since 2012 as tilting eastward. While the middle- and short-term anomalies were characterized by acceleration,pause and rapid change of tilt rate in two directions. The tendency anomalies of metal pendulum tilt records are the same before the two earthquakes. They both happened in the east direction. However,there are differences in duration,characteristic and earthquake intervals for the middle- and short-term anomalies.展开更多
This paper introduces the geological structure background around the 2014 Yutian Ms7. 3 earthquake area, investigates and analyzes the regime of small earthquake activity and the characteristics of regional seismicity...This paper introduces the geological structure background around the 2014 Yutian Ms7. 3 earthquake area, investigates and analyzes the regime of small earthquake activity and the characteristics of regional seismicity pattern in Xinjiang before the earthquake, and compares the characteristics of the regional seismic activity with the 2008 Yutian Ms7.3 earthquake. The results show: ① 2 ~ 3 years before the 2014 Yutian Ms7. 3 earthquake, Xinjiang was in a seismic active state with strong earthquake occurring successively, and before the 2008 Ms 7. 3 earthquake, Xinjiang was in the quiet state of moderate-small earthquakes with M3. 0 ~ 4. 0. ② Before this Yutian Ms7. 3 earthquake, the regional seismic activity showed a short-term anomaly feature, that is, seismicity of M ≥ 5. 0 earthquakes significantly increased on the Altun seismic zone and in the source area three years before the Ms7.3 earthquake, while a five year long quiescence of seismicity of M ≥4. 0 earthquakes appeared on the east of the source area in a range of about 440kin. Six months before this M7. 3 earthquake, there existed seismic gap of M3. 0 ~ 4. 0 earthquakes and near-conjugate seismic belt magnitude 3. 0 and 4. 0 in the source area. ③ The state of strong earthquake activity and the seismicity pattern of small earthquakes before this Yutian Ms7. 3 earthquake were significantly different to that before the 2008 Yutian Ms7. 3 earthquake, and this may be related to the different seismogenic environments of the two Ms7. 3 earthquakes.展开更多
The basic parameters,seismogenic structure and seismic sequences characteristics of the Yutian MS7. 3 earthquake on February 12,2014 are introduced and compared to the Yutian MS7. 3 earthquake in 2008. The results sho...The basic parameters,seismogenic structure and seismic sequences characteristics of the Yutian MS7. 3 earthquake on February 12,2014 are introduced and compared to the Yutian MS7. 3 earthquake in 2008. The results show that the MS5. 4 earthquake is regarded as an immediate foreshock of the Yutian MS7. 3 main shock. The frequency of strong aftershock sequences was low and their number declined quickly,and the maximum aftershock was a MS5. 7 earthquake. According to analysis of the historical earthquake sequence type,and parameter of h-value,b-value and energy release ratio between main shock and sequence etc.,we found the preliminary conclusion that the Yutian MS7. 3 earthquake sequence in 2014 was a foreshock-main shock-aftershock type.展开更多
Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery ...Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery of the Bayan Har block. By comparison of the characteristics of seismic strain release variations before and after the Kunlun Mountains M S8. 1 earthquake in the same time length in the geodynamical related regions,we found that the seismic strain release was obviously enhanced after the earthquake in the Longmenshan area,Batang area,and the NS-trending valleys at the west of the Hot Spring Basin. The Wenchuan earthquake occurred in the first area,and the Yushu earthquake is related to the second area. After the earthquake rupture occurred on the East Kunlun fault zone on the northern boundary of the Bayan Har Block,crustal materials on the south side of the fault zone migrated to the southeast,leading to a concentration of tectonic deformation in the Longmenshan thrust belt, e ventually rupturing on the Longmenshan thrust belt. This earthquake case illustrates that seismicity enhancement zones are possibly prone to long-term destructive earthquakes. After the M S7. 3 earthquake in Yutian,Xinjiang on February 12,2014,earthquake frequency and seismic strain release markedly increased in the junction area between the eastern Qilian Mountain tectonic belt and the Altun Tagh fault zone,where more attention should be paid to the long-term seismic risk.展开更多
Using the focal mechanism solutions and slip distribution model data of the Taiwan Straits MS7.3 earthquake on September 16, 1994, we calculate the static Coulomb stress changes stemming from the earthquake. Based on ...Using the focal mechanism solutions and slip distribution model data of the Taiwan Straits MS7.3 earthquake on September 16, 1994, we calculate the static Coulomb stress changes stemming from the earthquake. Based on the distribution of aftershocks and stress field, as well as the location of historical earthquakes, we analyze the Coulomb stress change triggered by the Taiwan Straits MS7.3 earthquake. The result shows that the static Coulomb stress change obtained by forward modeling based on the slip distribution model is quite consistent with the location of aftershocks in the areas far away from the epicenter. Ninety percent of aftershocks occurred in the stress increased areas. The Coulomb stress change is not entirely consistent with the distribution of aftershocks near the epicenter. It is found that Coulomb stress change can better reflect the aftershock distribution far away from the epicenter, while such corresponding relationship becomes quite complex near the epicenter. Through the calculation of the Coulomb stress change, we find that the stress increases in the southwest part of the Min-Yue (Fujian-Guangdong) coastal fault zone, which enhances the seismic activity. Therefore, it is deemed that the sea area between Nanpeng Island and Dongshan Island, where the Min-Yue coastal fault zone intersects with the NW-trending Shanghang-Dongshan fault, has a high seismic risk.展开更多
基金supported by the National Natural Science Foundation of China(41204058)the Running Foundation of the Gravity Network Center of China(201301008)
文摘Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, it is difficult to verify simulations of dislocation theory. In this study, it is shown that the GS15 gravimeter, located 99.5 km from the epicenter of the Ms7.0 Lushan earthquake on April 20, 2013 at 08 : 04 UTC + 8, showed the influence of the earthquake from 2013-04-16 to 2013-04-26 after a time calibration, tide correc- tions, drift correction, period correction and relaxation correction were applied to its data. The post-seismic relaxation process of the spring in the gravimeter took approximately 430 minutes and showed a 2. 5 ×10^-8 ms^-2 gravity change. After correcting for the relaxation process, it is shown that a coseismic gravity change of approximately +0.59 +-0. 4 ~ 10-Sms-2 was observed by the GS15 gravimeter; this agrees with the simulated gravity change of approximately 0.31 ~ 10 -8 ms-2. The rate of the coseismie gravity change and the coseismic vertical displacement, as measured by one-second and one-day sampling interval GPS units, is also consistent with the theoretical rate of change. Therefore, the GS15 gravimeter at the Pixian Station observed a coseismic gravity change after the Ms7.0 Lushan earthquake. This and similar measurements could be applied to test and confirm the theory used for these simulations.
基金founded the Projects of Science for Earthquake Resilience(XH16042Y)Project of Earthquake Science Foundation of Xinjiang,China(201501,201514)
文摘After the Yutian M_S7.3 earthquake,the authors instantly collected 1Hz high frequency data of the 4 reference stations within 350 km around the epicenter,and calculated the GNSS data with the TRACK module. The results showed that:( 1) The co-seismic displacement of Yutian station,about 54 km from the epicenter,is the most obvious,particularly in the EW component,with a change of about 52.5 ± 11mm,which is more than three times the mean-square error of calculating precision.( 2) In the Yutian reference station,the biggest variation in the EW component appeared within 1 minute after the earthquake.( 3) The change in the NS component is not great.
基金jointly sponsored by the National Key Technology R&D Program of China(2012BAK19B04-01-05)the Youth Earthquake Situation Tracking Program of China Earthquake Administration(2015010106)
文摘The Ms7. 3 earthquake occurred in Yutian, Xinjiang on February 12, 2014. Based on seismic waveform data before the earthquake and aftershocks of the earthquake sequence, which were recorded by the Xinjiang Regional Digital Seismic Network, this paper corrected instrument response, propagation path and site response of the S-wave recording spectra. We then calculated with genetic algorithms, on the basis of the Brune model, the source parameters of the 102 M, ≥ 3. 0 Yutian earthquake sequence, seismic moment, apparent stress and corner frequency. The results show that, seismic moment of the earthquake sequence is between 3. 46 × 10^11 -2. 08×10^15N.m, apparent stress is between 1.48 × 10^5 -1.16 ×10^6Pa, mean stress level is 0. 31MPa, and corner frequency is between 1.4-7. 1Hz in the range of 3. 0 -5. 0. By analyzing the apparent stress and corner frequency variation with time, we obtain that apparent stress of earthquakes before the Yutian Ms7. 3 earthquake was significantly higher than the aftershock sequence, but the corner frequency was significantly lower than the aftershock sequence. Apparent stress was at a high level before the main shock, which shows that the main shock zone accumulated higher stress, and then the apparent stress was reduced. The main shock occurred in the process of slow increase. Because of the release of a large amount of stress, after the Ms7. 3 earthquake, the apparent stress was gradually reduced. That was the performance of low stress fracture of aftershocks.
基金funded by National Key Basic Research and Development Program(grant No.2008CB42570),China
文摘On April 14, 2010, a devastating earthquake measured 7.1 on the Richter scale struck Yushu county, Qinghai Province, China. Field geological investigation and remote sensing interpretation show that this earthquake generated an inverse "L-shaped" surface rupture zone, approximately 50km long. The surface rupture zone can be divided into three segments. Between the northern and middle segments of the surface rupture, there is a 16km-long segment, where no rupture was observed. The middle and the southern segments are arranged in a left-step manner, and there are right-step en echelon ruptures developed in the stepovers. The seismogenic structure is the Yushu fault, which is dominated by strike-slip with a small amount of thrust component. The earthquake results from the differential movements between the southern Qiangtang Block and northern Bayan Har Block. The earthquake recurrence interval is 185a^108a. Along an approximately 20km-long part of the Garze-Yushu fault, between the southern surface rupture of Yushu Ms7. 1 earthquake and the 1896 earthquake, there is no surface rupture, its seismic risk needs further research.
文摘From Octobet 1998 to January 1999,5 earthquakes ( M s≥5) occurred between Ninglang and Yanyuan counties (27°07′~27°12′N,100°40′~101°00′E area).They were situated in 140km southwest of the Xichang.Among them,the largest one is M s 6 2 on November 19,1998.Based on small seismic data by the seismic remote sensing station of Xichang and the seismological station of Muli,and regional observation data,passing through careful observation and scientific analyses,we had made better forecasts before the earthquakes.That results obvious social benefits.By processing data of precursory earthquakes,such as,original observation data of total geomagnetic intensity from the station of Xichang,pressure capacitance stressometer and quartz horizaontal pendulum tiltmeter from the Xiaomiao station of Xichang,we summarized the sequence characteristics of the series earthquakes.The information about short\|term anomaly of gruond strain,total geomagnetic intensity and ground tilt before the earthquake is emphatically explained.
基金funded by the Spark Program of Earthquake Science of China(XH15047Y)the National Science Foundation of China(41404043)
文摘The regional tectonic background and characteristics of active faults of the Yutian MS7.3earthquake on February 12,2014 are discussed in this paper.After the analysis of the epicenter area of the MS7.3 earthquake in 2014 and the focal mechanisms of the former strong earthquakes around it,the authors deduced that the seismogenic fault of the MS7.3earthquake is the east branch of the Ashikule fault.The MS7.3 earthquake in 2014 and the MS7.3 earthquake in 2008 are two strong earthquake events on the different sections of the Altun Tagh fault,where the fault behavior changes from sinistral slip to normal faulting because of the extensional tail effects in the southern end of the Altun Tagh fault.It is concluded that the two MS7.3 earthquakes have the same dynamic source,and the MS7.3earthquake in 2008 promoted the occurrence of the MS7.3 earthquake in 2014.Finally,we calculate the Coulomb stress change to the seismogenic fault of the MS7.3 earthquake in2014 from the MS7.3 earthquake in 2008 using the layered crust model.The result also shows that the MS7.3 earthquake in 2008 accelerated the occurrence of the MS7.3earthquake in 2014.
基金supported by the National Natural Science Foundation of China ( 41404045)the Earthquake Tracing Task of China Earthquake Administration(2014020412)
文摘The February 12, 2014, Ms7. 3, earthquake in Yutian, Xinjiang, China, occurred as a result of shallow strike-slip faulting in the tectonicaUy complex region of the northern Tibetan Plateau, with a depth of 17kin. This earthquake occurred several hundred kilometers north of the convergent India-Eurasia plate boundary. The epicenter location of the Yutian earthquake, 36. 1° N, 82. 5° E, is ll0km north of Yutian County, Hotan Prefecture. A large number of aftershocks from ML2. 0 to ML3. 0 occurred until 12:00 o'clock, February 23, 2014 and the largest aftershock, Ms5. 7, occurred at 17:24 μm. , February 12, 2014. The b and h value of Yutian sequence are 0.70 and 1.29, respectively. The waiting time method reveals that the strong aftershocks above ML 4. 5 comply with a linear relationship, which is consistent with the characteristics of a mainshock-aftershock sequence. Furthermore, we calculate the source parameters and analyze the rupture process based on the empirical relationships for the Yutian earthquake, and the results indicate a frictional undershoot behavior in the dynamic source process of the Yutian earthquake, which is also in agreement with the lower and similar b values compared with the 2008 Ms 7.3 Yutian earthquake and the 2012 Ms 6. 2 Yutian earthquake.
基金sponsored by the National Key Technology R&D Program,China (2008BAC38B03-01)
文摘This paper calculates the static stress changes generated by the Yushu M_S 7. 1 earthquake in Qinghai Province. On the basis of regional stress,we take account of the static stress change triggered by the Yushu M_S 7. 1 earthquake to find the optimally oriented fault planes,then calculate the Coulomb stress change on the optimally oriented fault plane. The results indicate that most of the aftershocks are triggered by the mainshock. The image of Coulomb stress changes is also in accord with regional earthquakes ( M_L ≥3. 0 ) distribution,but the value is lower than 0. 01MPa. In addition,this paper calculates the Coulomb stress changes in the case that the aftershock fault plane is the same as the main shock. Through comparison,we find that the image of Coulomb stress changes obtained using the "optimally oriented fault"approach is more consistent with the distribution of Yushu aftershocks and regional earthquakes.
基金supported by special R&D project in earthquake science,Seismic risk assessment of active faults in the national key earthquake monitoring and prevention regions(20070851)
文摘The coseismic surface rupture zone of the seismogenic fault of the Ms7.1 Yushu earthquake includes three left-stepping main ruptures, striking 300°- 320°, in general. An approximately 2km-long en echelon tension fissure zone was found at Longbao town. The main rupture in the northern part is about 16km long, about 9kin long in the middle part, and about 7km long in the southern part, with a total length of 34km. Each of the main ruptures consists of a series of en echelon sub-ruptures represented by a series of compression bulges alternating with tension fissures or by en echelon fissures. The rupture at Changusi, the southernmost of the ruptures, is characterized by vertical displacement, with a value of 50cm. The rupture zone shows left-lateral strike-slip characteristics. The maximal horizontal slip is on the northern main rupture, with a value of 1.8m.
基金sponsored by the Earthquake Science Foundation of Xinjiang,China(201302)
文摘The Yutian earthquake with M_S7.3 happened on February 12,2014. The precursor monitoring ability is weak in that area. We found tendency anomalies and middle- and short-term anomalies from metal pendulum tilt measurements in Hotan seismic station before the earthquake. And we also compared the anomalies with that of the M_S7.3 Yutian earthquake on March 21,2008. The tendency anomalies measured by the metal pendulum tiltmeter appeared since 2012 as tilting eastward. While the middle- and short-term anomalies were characterized by acceleration,pause and rapid change of tilt rate in two directions. The tendency anomalies of metal pendulum tilt records are the same before the two earthquakes. They both happened in the east direction. However,there are differences in duration,characteristic and earthquake intervals for the middle- and short-term anomalies.
基金sponsored by the Special Fund for Earthquake Trend Tracing from Department of Monitoring and Prediction of China Earthquake Administration
文摘This paper introduces the geological structure background around the 2014 Yutian Ms7. 3 earthquake area, investigates and analyzes the regime of small earthquake activity and the characteristics of regional seismicity pattern in Xinjiang before the earthquake, and compares the characteristics of the regional seismic activity with the 2008 Yutian Ms7.3 earthquake. The results show: ① 2 ~ 3 years before the 2014 Yutian Ms7. 3 earthquake, Xinjiang was in a seismic active state with strong earthquake occurring successively, and before the 2008 Ms 7. 3 earthquake, Xinjiang was in the quiet state of moderate-small earthquakes with M3. 0 ~ 4. 0. ② Before this Yutian Ms7. 3 earthquake, the regional seismic activity showed a short-term anomaly feature, that is, seismicity of M ≥ 5. 0 earthquakes significantly increased on the Altun seismic zone and in the source area three years before the Ms7.3 earthquake, while a five year long quiescence of seismicity of M ≥4. 0 earthquakes appeared on the east of the source area in a range of about 440kin. Six months before this M7. 3 earthquake, there existed seismic gap of M3. 0 ~ 4. 0 earthquakes and near-conjugate seismic belt magnitude 3. 0 and 4. 0 in the source area. ③ The state of strong earthquake activity and the seismicity pattern of small earthquakes before this Yutian Ms7. 3 earthquake were significantly different to that before the 2008 Yutian Ms7. 3 earthquake, and this may be related to the different seismogenic environments of the two Ms7. 3 earthquakes.
基金funded by the Open-end Foundation of State Key Laboratory of Earthquake Dynamics(LED2014B01)Project of Earthquake Science Foundation of Xinjiang,China(20120201)
文摘The basic parameters,seismogenic structure and seismic sequences characteristics of the Yutian MS7. 3 earthquake on February 12,2014 are introduced and compared to the Yutian MS7. 3 earthquake in 2008. The results show that the MS5. 4 earthquake is regarded as an immediate foreshock of the Yutian MS7. 3 main shock. The frequency of strong aftershock sequences was low and their number declined quickly,and the maximum aftershock was a MS5. 7 earthquake. According to analysis of the historical earthquake sequence type,and parameter of h-value,b-value and energy release ratio between main shock and sequence etc.,we found the preliminary conclusion that the Yutian MS7. 3 earthquake sequence in 2014 was a foreshock-main shock-aftershock type.
基金jointly supported by National Science Foundation of China(41302171)Active Fault Exploration in China(60112304)Basic Scientific Research Funds of China Earthquake Administration(2014IES0401,2012IES010303)
文摘Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery of the Bayan Har block. By comparison of the characteristics of seismic strain release variations before and after the Kunlun Mountains M S8. 1 earthquake in the same time length in the geodynamical related regions,we found that the seismic strain release was obviously enhanced after the earthquake in the Longmenshan area,Batang area,and the NS-trending valleys at the west of the Hot Spring Basin. The Wenchuan earthquake occurred in the first area,and the Yushu earthquake is related to the second area. After the earthquake rupture occurred on the East Kunlun fault zone on the northern boundary of the Bayan Har Block,crustal materials on the south side of the fault zone migrated to the southeast,leading to a concentration of tectonic deformation in the Longmenshan thrust belt, e ventually rupturing on the Longmenshan thrust belt. This earthquake case illustrates that seismicity enhancement zones are possibly prone to long-term destructive earthquakes. After the M S7. 3 earthquake in Yutian,Xinjiang on February 12,2014,earthquake frequency and seismic strain release markedly increased in the junction area between the eastern Qilian Mountain tectonic belt and the Altun Tagh fault zone,where more attention should be paid to the long-term seismic risk.
基金sponsored jointly by the National Natural Science Foundation of China(U0933006),National Natural Science Foundation of China(41006030,41176054)the Special Research Program(908Program)of Guangdong Province(GD908-JC-03,GD908-JC-10)
文摘Using the focal mechanism solutions and slip distribution model data of the Taiwan Straits MS7.3 earthquake on September 16, 1994, we calculate the static Coulomb stress changes stemming from the earthquake. Based on the distribution of aftershocks and stress field, as well as the location of historical earthquakes, we analyze the Coulomb stress change triggered by the Taiwan Straits MS7.3 earthquake. The result shows that the static Coulomb stress change obtained by forward modeling based on the slip distribution model is quite consistent with the location of aftershocks in the areas far away from the epicenter. Ninety percent of aftershocks occurred in the stress increased areas. The Coulomb stress change is not entirely consistent with the distribution of aftershocks near the epicenter. It is found that Coulomb stress change can better reflect the aftershock distribution far away from the epicenter, while such corresponding relationship becomes quite complex near the epicenter. Through the calculation of the Coulomb stress change, we find that the stress increases in the southwest part of the Min-Yue (Fujian-Guangdong) coastal fault zone, which enhances the seismic activity. Therefore, it is deemed that the sea area between Nanpeng Island and Dongshan Island, where the Min-Yue coastal fault zone intersects with the NW-trending Shanghang-Dongshan fault, has a high seismic risk.