Objective: To analyze the biomechanical elements of Nitinol Patellar Concentrator (NT-PC) in heating commi nuted patellar fractures. Methods: The epoxy resin three dimensional photoelasticity pobal model was loaded wi...Objective: To analyze the biomechanical elements of Nitinol Patellar Concentrator (NT-PC) in heating commi nuted patellar fractures. Methods: The epoxy resin three dimensional photoelasticity pobal model was loaded with Nitinol Patellar Connector and frozen. After dividing layer, photographing and tracing, iterative method was used to calculate the stress value of every tuteed node. Rasults: Stress values of 1 262 nodes scattered in 12 layers were obtained The stress distribution indicated that an overall stress field was yield when the NT-PC fixated the patellar model, and there existed fixative stress in the facies articularis and distal pole of the patellar model. Conclusion: The NT-PC has evident therapeutic effect for the comminuted patellar fractures. The existing stress is helpful in maintaining anatomical reduction and enhancing fracture healing.展开更多
Objective: To compare the biomechanical basis of 3 different internal fixation methods: nitinol patellar concentrator (NT-PC), tension band and wire circle in treating patellar fractures. Methods: The epoxy resin thre...Objective: To compare the biomechanical basis of 3 different internal fixation methods: nitinol patellar concentrator (NT-PC), tension band and wire circle in treating patellar fractures. Methods: The epoxy resin three dimensional photoelasticity patellar models were made by precise moulding, and were fixated by nitinol patellar concentrator (NT-PC), tension band and wire circle respectively. The patellar models with frozen stress stripes were put into the polarized light field and the stress distributions were compared. As for the model fixated by NT-PC, by dividing layer, photographing and tracing, we used the iterative method to calculate the stress value of every internal node of the epoxy resin patellar model, and the character of stress was analyzed. Results: An overall stress field was yielded when the patellar model was fixated by NT-PC, and the stripes were more than that of tension band model and wire circle model, which have only few stress stripes in the fixated layers. Further analysis indicated that there were continuous fixated stresses in the facies articularis and distal pole of patella, and the character of stresses produced by NT-PC were mainly in longitudinal direction, then in transverse direction. The shearing stresses were small. Conclusion: The initiative and continuous memorial stress of NT-PC and its overall stress distribution character are the essence of NT-PC distinguished with tension band and wire circle in treating patellar fractures. The stress character produced by NT-PC is good for the stability of fracture site and prompts fracture healing.展开更多
文摘Objective: To analyze the biomechanical elements of Nitinol Patellar Concentrator (NT-PC) in heating commi nuted patellar fractures. Methods: The epoxy resin three dimensional photoelasticity pobal model was loaded with Nitinol Patellar Connector and frozen. After dividing layer, photographing and tracing, iterative method was used to calculate the stress value of every tuteed node. Rasults: Stress values of 1 262 nodes scattered in 12 layers were obtained The stress distribution indicated that an overall stress field was yield when the NT-PC fixated the patellar model, and there existed fixative stress in the facies articularis and distal pole of the patellar model. Conclusion: The NT-PC has evident therapeutic effect for the comminuted patellar fractures. The existing stress is helpful in maintaining anatomical reduction and enhancing fracture healing.
文摘Objective: To compare the biomechanical basis of 3 different internal fixation methods: nitinol patellar concentrator (NT-PC), tension band and wire circle in treating patellar fractures. Methods: The epoxy resin three dimensional photoelasticity patellar models were made by precise moulding, and were fixated by nitinol patellar concentrator (NT-PC), tension band and wire circle respectively. The patellar models with frozen stress stripes were put into the polarized light field and the stress distributions were compared. As for the model fixated by NT-PC, by dividing layer, photographing and tracing, we used the iterative method to calculate the stress value of every internal node of the epoxy resin patellar model, and the character of stress was analyzed. Results: An overall stress field was yielded when the patellar model was fixated by NT-PC, and the stripes were more than that of tension band model and wire circle model, which have only few stress stripes in the fixated layers. Further analysis indicated that there were continuous fixated stresses in the facies articularis and distal pole of patella, and the character of stresses produced by NT-PC were mainly in longitudinal direction, then in transverse direction. The shearing stresses were small. Conclusion: The initiative and continuous memorial stress of NT-PC and its overall stress distribution character are the essence of NT-PC distinguished with tension band and wire circle in treating patellar fractures. The stress character produced by NT-PC is good for the stability of fracture site and prompts fracture healing.