Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Exper...Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Experiments were conducted with the composition of medium components obtained by genetic algorithm, and the experimental data were used to build a BP (back propagation) neural network model. The concentrations of six medium components were used as input vectors, and the nitrite oxidization rate was used as output vector of the model. The BP neural network model was used as the objective function of genetic algorithm to find the optimum medium composition for the maximum nitrite oxidization rate. The maximum nitrite oxidization rate was 0.952 g 2 NO-2-N·(g MLSS)-1·d-1 , obtained at the genetic algorithm optimized concentration of medium components (g·L-1 ): NaCl 0.58, MgSO 4 ·7H 2 O 0.14, FeSO 4 ·7H 2 O 0.141, KH 2 PO 4 0.8485, NaNO 2 2.52, and NaHCO 3 3.613. Validation experiments suggest that the experimental results are consistent with the best result predicted by the model. A scale-up experiment shows that the nitrite degraded completely after 34 h when cultured in the optimum medium, which is 10 h less than that cultured in the initial medium.展开更多
The effects of chitosan characteristics including the degree of deacetylation, molecular weight, particle size, pH pretreatment and immobilization time on the immobilization of nitrite-oxidizing bacteria (NOB) on bi...The effects of chitosan characteristics including the degree of deacetylation, molecular weight, particle size, pH pretreatment and immobilization time on the immobilization of nitrite-oxidizing bacteria (NOB) on biopolymeric chitosan were investigated. Nitrite removal efficiency of immobilized NOB depended on the degree of deacetylation, particle size, pH pretreatment on the surface of chitosan and immobilization time. Scanning electron microscope characterization illustrated that the number of NOB cells attached to the surface of chitosan increased with an increment of immobilization time. The optimal condition for NOB immobilization on chitosan was achieved during a 24-hr immobilization period using chitosan with the degree of deacetylation larger than 80% and various particle size ranges between 1-5 mm at pH 6.5. In general, the NOB immobilized on chitosan flakes has a high potential to remove excess nitrite from wastewater and aquaculture systems.展开更多
基金Supported by the National Natural Science Foundation of China (21076090)
文摘Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Experiments were conducted with the composition of medium components obtained by genetic algorithm, and the experimental data were used to build a BP (back propagation) neural network model. The concentrations of six medium components were used as input vectors, and the nitrite oxidization rate was used as output vector of the model. The BP neural network model was used as the objective function of genetic algorithm to find the optimum medium composition for the maximum nitrite oxidization rate. The maximum nitrite oxidization rate was 0.952 g 2 NO-2-N·(g MLSS)-1·d-1 , obtained at the genetic algorithm optimized concentration of medium components (g·L-1 ): NaCl 0.58, MgSO 4 ·7H 2 O 0.14, FeSO 4 ·7H 2 O 0.141, KH 2 PO 4 0.8485, NaNO 2 2.52, and NaHCO 3 3.613. Validation experiments suggest that the experimental results are consistent with the best result predicted by the model. A scale-up experiment shows that the nitrite degraded completely after 34 h when cultured in the optimum medium, which is 10 h less than that cultured in the initial medium.
基金supported by the Ratchadaphiseksomphot Endowment Fund
文摘The effects of chitosan characteristics including the degree of deacetylation, molecular weight, particle size, pH pretreatment and immobilization time on the immobilization of nitrite-oxidizing bacteria (NOB) on biopolymeric chitosan were investigated. Nitrite removal efficiency of immobilized NOB depended on the degree of deacetylation, particle size, pH pretreatment on the surface of chitosan and immobilization time. Scanning electron microscope characterization illustrated that the number of NOB cells attached to the surface of chitosan increased with an increment of immobilization time. The optimal condition for NOB immobilization on chitosan was achieved during a 24-hr immobilization period using chitosan with the degree of deacetylation larger than 80% and various particle size ranges between 1-5 mm at pH 6.5. In general, the NOB immobilized on chitosan flakes has a high potential to remove excess nitrite from wastewater and aquaculture systems.