Phosphorus fertilizers from less pure sedimentary sources become increasingly important, due to depletion of phosphorus from igneous rock of high quality. Consequently, robust methods with potential to remove various ...Phosphorus fertilizers from less pure sedimentary sources become increasingly important, due to depletion of phosphorus from igneous rock of high quality. Consequently, robust methods with potential to remove various types of hazardous elements are required. Among such impurities, hexavalent chromium (Cr(VI)) is very likely to become a future challenge. Different industrial ways to treat phosphate rock are currently being practised, and we have here studied how chromium behaves when using the nitro-phosphate process. The reduction mechanism of Cr (VI) in nitric acid and phosphoric acid solutions was investigated by measuring redox potential and UV-VIS spectra. The results show that Cr (VI) is not stable in strong nitric acid solutions. Reduction of Cr (VI) species decreased with decreasing temperature, NO<sub>2</sub> concentration, ionic strength and absence of light. These findings support the proposed reduction reaction:The reduction rate was observed proportional to the nitric acid decomposition: .展开更多
Development of electrodes with high electrocatalytic activity and stability is essential for solving problems that still restrict the extensive application of vanadium redox flow batteries(VRFBs).Here,we designed a no...Development of electrodes with high electrocatalytic activity and stability is essential for solving problems that still restrict the extensive application of vanadium redox flow batteries(VRFBs).Here,we designed a novel negative electrode with superior electrocatalytic activity by tailoring nitrogen functional groups,such as newly formed nitro and pyridinic-N transformed to pyridonic-N,from the prenitrogen-doped electrode.It was experimentally confirmed that an electrode with pyridonic-N and nitro fuctional groups(tailored nitrogen-doped graphite felt,TNGF) has superior electrocatalytic acivity with enhanced electron and mass transfer.Density functional theory calulations demonstrated the pyridonic-N and nitro functional groups promoted the adsorption,charge transfer,and bond formation with the vanadium species,which is consistent with expermental results.In addition,the V2+/V3+redox reaction mechanism on pyridonic-N and nitro functional groups was estabilised based on density functional theory(DFT) results.When TNGF was applied to a VRFB,it enabled enhanced-electrolyte utilization and energy efficiencies(EE) of 57.9% and 64.6%,respectively,at a current density of 250 mA cm^(-2).These results are 18.6% and 8.9% higher than those of VRFB with electrode containing graphitic-N and pyridinicN groups.Interestingly,TNGF-based VRFB still operated with an EE of 59% at a high current density of300 mA cm^(-2).The TNGF-based VRFB exhibited stable cycling performance without noticeable decay of EE over 450 charge-discharge cycles at a current density of 250 mA cm^(-2).The results of this study suggest that introducing pyridonic-N and nitro groups on the electrode is effective for improving the electrochemical performance of VRFBs.展开更多
水分和氮肥是制约旱地农业生产的重要因素。基于2013—2022年内蒙古自治区突泉春玉米发育期、单产和田间管理数据,对农业生产系统模型(agricultural production system simulator,APSIM)调参验证;基于验证后的模型,结合1981—2022年突...水分和氮肥是制约旱地农业生产的重要因素。基于2013—2022年内蒙古自治区突泉春玉米发育期、单产和田间管理数据,对农业生产系统模型(agricultural production system simulator,APSIM)调参验证;基于验证后的模型,结合1981—2022年突泉气象数据,设计不同水分亏缺程度下水氮管理情景,以春玉米单产、水氮用量和效率为指标,提出春玉米最优水氮管理措施,并分析不同降水年型下春玉米适宜灌溉量和施氮量。结果表明:APSIM对春玉米出苗-开花日数、出苗-成熟日数和单产模拟值与实测值的归一化均方根误差分别为1.3%、1.2%和2.8%,APSIM可定量模拟春玉米发育期和单产。综合春玉米单产、灌溉量、施氮量、水分生产力和氮肥农学效率,最优管理措施为0~100 cm土壤剖面深度下水分亏缺程度为60%时补充灌溉,灌溉量为171.0 mm,施氮量为197.8 kg·hm^(-2)。当春玉米生长季降水量为200~400、401~600 mm和601~800 mm时,适宜的灌溉量分别为233.0~283.5、110.5~148.4 mm和125.0~155.0 mm,施氮量分别为176.9~219.3、218.3~241.5 kg·hm^(-2)和211.8~249.9 kg·hm^(-2)。展开更多
文摘Phosphorus fertilizers from less pure sedimentary sources become increasingly important, due to depletion of phosphorus from igneous rock of high quality. Consequently, robust methods with potential to remove various types of hazardous elements are required. Among such impurities, hexavalent chromium (Cr(VI)) is very likely to become a future challenge. Different industrial ways to treat phosphate rock are currently being practised, and we have here studied how chromium behaves when using the nitro-phosphate process. The reduction mechanism of Cr (VI) in nitric acid and phosphoric acid solutions was investigated by measuring redox potential and UV-VIS spectra. The results show that Cr (VI) is not stable in strong nitric acid solutions. Reduction of Cr (VI) species decreased with decreasing temperature, NO<sub>2</sub> concentration, ionic strength and absence of light. These findings support the proposed reduction reaction:The reduction rate was observed proportional to the nitric acid decomposition: .
基金financially supported by the Research Program from Korea Institute of Industrial Technology(EM220011)the Technology Innovation Program(20020229,Development of technology for manufacturing catalysts and electrode parts by use of low contents precious metals of rare metals) funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)+2 种基金the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(2022R1F1A1072569)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science,ICT & Future Planning(NRF2020R1C1C1010493)“Regional Innovation Strategy(RIS)” through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE)(2021RIS-004)。
文摘Development of electrodes with high electrocatalytic activity and stability is essential for solving problems that still restrict the extensive application of vanadium redox flow batteries(VRFBs).Here,we designed a novel negative electrode with superior electrocatalytic activity by tailoring nitrogen functional groups,such as newly formed nitro and pyridinic-N transformed to pyridonic-N,from the prenitrogen-doped electrode.It was experimentally confirmed that an electrode with pyridonic-N and nitro fuctional groups(tailored nitrogen-doped graphite felt,TNGF) has superior electrocatalytic acivity with enhanced electron and mass transfer.Density functional theory calulations demonstrated the pyridonic-N and nitro functional groups promoted the adsorption,charge transfer,and bond formation with the vanadium species,which is consistent with expermental results.In addition,the V2+/V3+redox reaction mechanism on pyridonic-N and nitro functional groups was estabilised based on density functional theory(DFT) results.When TNGF was applied to a VRFB,it enabled enhanced-electrolyte utilization and energy efficiencies(EE) of 57.9% and 64.6%,respectively,at a current density of 250 mA cm^(-2).These results are 18.6% and 8.9% higher than those of VRFB with electrode containing graphitic-N and pyridinicN groups.Interestingly,TNGF-based VRFB still operated with an EE of 59% at a high current density of300 mA cm^(-2).The TNGF-based VRFB exhibited stable cycling performance without noticeable decay of EE over 450 charge-discharge cycles at a current density of 250 mA cm^(-2).The results of this study suggest that introducing pyridonic-N and nitro groups on the electrode is effective for improving the electrochemical performance of VRFBs.