期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron 被引量:23
1
作者 Jun Dong Yongsheng Zhao +1 位作者 Ran Zhao Rui Zhou 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第11期1741-1747,共7页
Nitrobenzene has been considered as a significant groundwater contaminant due to its wide usage in explosives, insecticides, herbicides, pharmaceuticals and dyes. Nitrobenzene is of environmental concern because of it... Nitrobenzene has been considered as a significant groundwater contaminant due to its wide usage in explosives, insecticides, herbicides, pharmaceuticals and dyes. Nitrobenzene is of environmental concern because of its toxicity. In the presence of zero-valent iron (ZVI), reduction of the nitro group is the dominant transformation process for nitrobenzene. A series of experiments were carried out to investigate the kinetics of nitrobenzene reduction by ZVI and the effects of pH and ZVI particle size on nitrobenzene removal in groundwater. The results indicated that nitrobenzene could be reduced to aniline by ZVI; the reduction of nitrobenzene by ZVI followed a pseudo first-order kinetics; the observed nitrobenzene reduction rate constant (k obs ) was 0.0006 min^-1 and the half-life of nitrobenzene (t 1/2 ) was 115.5 min; the mass balance achieved 87.5% for nitrobenzene reduction by the 1 mm ZVI particle and the final removal efficiency was 80.98%. In addition, the pH and ZVI particle size were found to exhibit significant influences on the nitrobenzene reduction. The observed nitrobenzene reduction rate constant linearly decreased with increase pH and the data fitted on polynomial regression equation for the observed nitrobenzene reduction rate constant and ZVI particle size. Therefore, use of ZVI based permeable reactive barrier technology to remedy nitrobenzene contaminated groundwater was feasible. 展开更多
关键词 zero-valent iron nitrobenzene reduction aniline formation particle size
原文传递
Kinetics of nitrobenzene degradation coupled to indigenous microorganism dissimilatory iron reduction stimulated by emulsified vegetable oil 被引量:4
2
作者 Jun Dong Linjie Ding +2 位作者 Zifang Chi Jiansen Lei Yan Su 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第4期206-216,共11页
Widespread contamination by nitrobenzene(NB) in sediments and groundwater requires better understanding of the biogeochemical removal process of the pollutant. NB degradation, coupled with dissimilatory iron reducti... Widespread contamination by nitrobenzene(NB) in sediments and groundwater requires better understanding of the biogeochemical removal process of the pollutant. NB degradation, coupled with dissimilatory iron reduction, is one of the most efficient pollutant removal methods. However, research on NB degradation coupled to indigenous microorganism dissimilatory iron reduction stimulated by electron donors is still experimental. A model for remediation in an actual polluted site does not currently exist.Therefore, in this study, the dynamics was derived from the Michaelis–Menten model(when the mass ratio of emulsified vegetable oil and NB reached the critical value 91:1). The effect of SO4^(2-), NO3^-, Ca^(2+)/Mg^(2+), and the grain size of aquifer media on the dynamics were studied, and the NB degradation dynamic model was then modified based on the most significant factors. Utilizing the model, the remediation time could be calculated in a contaminated site. 展开更多
关键词 nitrobenzene degradation model Iron reduction Groundwater Emulsified vegetable oil Site remediation
原文传递
Direct transformation of ZIF-8 into hollow porous carbons and hollow carbon composites 被引量:1
3
作者 Lingqi Huang Zhiyong Luo +3 位作者 Wenjie Han Qi Zhang He Zhu Shiping Zhu 《Nano Research》 SCIE EI CSCD 2022年第7期5769-5774,共6页
Hollow porous carbons(HPCs)are a class of porous materials with advantages of high surface to volume ratio,large interior cavities,low density,and short diffusion length,which are promising in various applications.Dir... Hollow porous carbons(HPCs)are a class of porous materials with advantages of high surface to volume ratio,large interior cavities,low density,and short diffusion length,which are promising in various applications.Direct carbonization of carbon precursors is the simplest and the most cost-effective method to prepare porous carbons,however,it often leads to non-hollow structures.Herein,we demonstrate the preparation of HPCs through a direct carbonization method with a two-step heating process of zeolitic imidazolate framework-8(ZIF-8)and tetrafluoroterephthalonitrile(TFTPN).During the carbonization,ZIF-8 nanoparticles first react with TFTPN at low temperature to create polymer coatings on the surface,which are then converted into HPCs at elevated temperature.The obtained HPCs show hierarchically porous structure with high specific surface areas and pore volumes.Additionally,this method has been adopted to fabricate Au@HPCs yolk–shell composites,exhibiting good catalytic performance in nitrobenzene reduction.The developed synthesis strategy can enrich the toolbox for the preparation of novel HPCs and their composites. 展开更多
关键词 porous hollow carbon CARBONIZATION gold nanoparticles nitrobenzene reduction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部