Nitrogen-vacancy (NV) center in diamond is one of the most promising candidates to implement room temperature quantum computing. In this review, we briefly discuss the working principles and recent experimental prog...Nitrogen-vacancy (NV) center in diamond is one of the most promising candidates to implement room temperature quantum computing. In this review, we briefly discuss the working principles and recent experimental progresses of this spin qubit. These results focus on understanding and prolonging center spin coherence, steering and probing spin states with dedicated quantum control techniques, and exploiting the quantum nature of these multi-spin systems, such as superposition and entanglement, to demonstrate the superiority of quantum information processing. Those techniques also stimulate the fast development of NV-based quantum sensing, which is an interdisciplinary field with great potential applications.展开更多
We investigate spontaneous emission properties and control of the zero phonon line (ZPL) from a diamond nitrogen- vacancy (NV) center coherently driven by a single ellipfically polarized control field. We use the ...We investigate spontaneous emission properties and control of the zero phonon line (ZPL) from a diamond nitrogen- vacancy (NV) center coherently driven by a single ellipfically polarized control field. We use the Schrrdinger equation to calculate the probability amplitudes of the wave function of the coupled system and derive analytical expressions of the spontaneous emission spectra. The numerical results show that a few interesting phenomena such as enhancement, narrowing, suppression, and quenching of the ZPL spontaneous emission can be realized by modulating the polarization- dependent phase, the Zeeman shift, and the intensity of the control field in our system. In the dressed-state picture of the control field, we find that multiple spontaneously generated coherence arises due to three close-lying states decaying to the same state. These results are useful in real experiments.展开更多
Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum infor- mation processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) ...Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum infor- mation processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) system, in which the nitrogen-vacancy (NV) center in diamond is coupled to a microtoroidal resonator (MTR), has been proposed as a poten- tial system for hybrid quantum information and computing. By virtue of such systems, we present a scheme to realize a nonlocal N-qubit conditional phase gate directly. Our scheme employs a cavity input-output process and single-photon interference, without the use of any auxiliary entanglement pair or classical communication. Considering the currently available technologies, our scheme might be quite useful among different nodes in quantum networks for large-scaled QIP.展开更多
We design proposals to generate a remote Greenberger-Horne-Zeilinger(GHZ) state and a W state of nitrogenvacancy(NV) centers coupled to microtoroidal resonators(MTRs) through noisy channels by utilizing time-bin...We design proposals to generate a remote Greenberger-Horne-Zeilinger(GHZ) state and a W state of nitrogenvacancy(NV) centers coupled to microtoroidal resonators(MTRs) through noisy channels by utilizing time-bin encoding processes and fast-optical-switch-based polarization rotation operations.The polarization and phase noise induced by noisy channels generally affect the time of state generation but not its success probability and fidelity.Besides,the above proposals can be generalized to n-qubit between two or among n remote nodes with success probability unity under ideal conditions.Furthennore,the proposals are robust for regular noise-changeable channels for the n-node case.This method is also useful in other remote quantum information processing tasks through noisy channels.展开更多
Nitrogen-15 isotope-modified compounds are widely used in medicine, pharmacology, agriculture and various fields of science and their nomenclature is gradually increasing. Their widespread use depends on the availabil...Nitrogen-15 isotope-modified compounds are widely used in medicine, pharmacology, agriculture and various fields of science and their nomenclature is gradually increasing. Their widespread use depends on the availability of inexpensive and simple isotope analysis methods. The present article is an attempt to determine the nitrogen-15 isotope content directly in organic compounds without their conversion. The general principle of possibility of determination of the isotopes of nitrogen directly in organic compounds is proposed. Based on the study of mass-spectra of Carbamide Carbonyldiamide, isocyanic acid and nitrobenzene the mass peaks are selected, by which it is possible to determine the atomic fraction of the isotopes of nitrogen. The respective formulas are proposed.展开更多
合成氨(NH_(3))的发展是现代工业进程和人类生存的基石。受氮气(N_(2))化学惰性的限制,当前的合成氨工业能源消耗高并且排放大量的二氧化碳。电化学氮气还原反应(NRR),是有望取代高能耗的Haber-Bosch(HB)合成法的一种绿色可持续的合成...合成氨(NH_(3))的发展是现代工业进程和人类生存的基石。受氮气(N_(2))化学惰性的限制,当前的合成氨工业能源消耗高并且排放大量的二氧化碳。电化学氮气还原反应(NRR),是有望取代高能耗的Haber-Bosch(HB)合成法的一种绿色可持续的合成氨工艺。然而,因氮气以及析氢竞争富反应(HER)导致电催化氮气还原极低的NH_(3)产率和能量转换效率一直是目前人工固氮领域面临的挑战。在本文中,我们报道了一种具有丰富孔结构的磷掺杂碳(PC)负载Zn_(3)(PO_(4))_(2)/Zn_(2)P_(2)O_(7)纳米复合材料(h-PC/Zn_(3)(PO_(4))_(2)/Zn_(2)P_(2)O_(7)),在酸性和中性介质中将N_(2)高效催化转化为NH_(3)。其独特的分级多孔结构提高了表面粗糙度并加快了氮气在催化剂体相中的扩散,这有利于延长氮气在催化剂表面的停留时间以及提高活性位点的利用效率。而多组分的均匀分布可以调节电子结构并优化反应中间体的吸附行为,进而提高活性位点的本征活性。在0.1mol·L^(-1)HCI电解液中,h-PC/Zn_(3)(PO_(4))_(2)/Zn_(2)P_(2)O_(7)在-0.2 V vs.可逆氢电极(RHE)电位下NH_(3)的产率可以达到38.7±1.2μg·h^(-1)·mgcat^(-1),法拉第效率为19.8%±0.9%。此外;h-PC/Zn_(3)(PO_(4))_(2)/Zn_(2)P_(2)O_(7)在0.1 mol·L^(-1)Na_(2)SO_(4)溶液中同样展现出优异的电催化氮气还原合成氨性能,NH_(3)产率及法拉第效率分别为17.1±0.8μg·h^(-1)·mgcat^(-1)和15.g%±0.6%,明显优于PC/Zn_(3)P_(2)、C/ZnO和大多数报道的非贵金属电催化剂。这种优异的性能主要归因于多孔结构有利于传质及多组分活性位点协同效应。此外,我们采用非原位X射线光电子能谱(XPS)、透射电子显微镜(TEM)和X射线衍射(XRD)等表征手段对NRR测试前后h-PC/Zn_(3)(PO_(4))_(2)/Zn_(2)P_(2)O_(7)的组成和结构变化进行了剖析。在反应后检测到了新增的N物种信号,证明催化剂确实发生了氮气还原反应。本研究提供了一种通过同步构建传质通道并耦合不同的活性位点以协同增强NRR活性和选择性的新思路,这对加快绿色制氨工业化具有重大意义。展开更多
In this paper, we have reported an investigation on the evolution of nitrogen structures in diamond crystals which contain nitrogen donor atoms in the range of 1500 ppm-1600 ppm following an annealing treatment at a h...In this paper, we have reported an investigation on the evolution of nitrogen structures in diamond crystals which contain nitrogen donor atoms in the range of 1500 ppm-1600 ppm following an annealing treatment at a high pressure of about 6.5 GPa and high temperatures of 1920 K-2120 K. The annealing treatment was found to completely transform nitrogen atoms originally arranged in a single substitutional form (C-center), into a pair form (A-center), indicated from infrared (IR) spectra. The photoluminescence (PL) spectra revealed that a small fraction of nitrogen atoms remained in C-center form, while some nitrogen atoms in A-center form were further transformed into N3 and H3 center structures. In addition, PL spectra have revealed the existence of two newly observed nitrogen-related structures with zero phonon lines at 611 nm and 711 nm. All these findings above are very helpful in understanding the formation mechanism of natural diamond stones of the Ia-type, which contains nitrogen atoms in an aggregated form.展开更多
基金Project supported by the National Basic Research Program of China(Grant Nos.2014CB921402 and 2015CB921103)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07010300)+1 种基金the National Natural Science Foundation of China(Grant No.11574386)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB0803)
文摘Nitrogen-vacancy (NV) center in diamond is one of the most promising candidates to implement room temperature quantum computing. In this review, we briefly discuss the working principles and recent experimental progresses of this spin qubit. These results focus on understanding and prolonging center spin coherence, steering and probing spin states with dedicated quantum control techniques, and exploiting the quantum nature of these multi-spin systems, such as superposition and entanglement, to demonstrate the superiority of quantum information processing. Those techniques also stimulate the fast development of NV-based quantum sensing, which is an interdisciplinary field with great potential applications.
基金Part of this project supported by the National Natural Science Foundation of China(Grant Nos.11375067,11275074,11104210,11004069,and 91021011)the Doctoral Foundation of the Ministry of Education of China(Grant No.20100142120081)the National Basic Research Program of China(GrantNo.2012CB922103)
文摘We investigate spontaneous emission properties and control of the zero phonon line (ZPL) from a diamond nitrogen- vacancy (NV) center coherently driven by a single ellipfically polarized control field. We use the Schrrdinger equation to calculate the probability amplitudes of the wave function of the coupled system and derive analytical expressions of the spontaneous emission spectra. The numerical results show that a few interesting phenomena such as enhancement, narrowing, suppression, and quenching of the ZPL spontaneous emission can be realized by modulating the polarization- dependent phase, the Zeeman shift, and the intensity of the control field in our system. In the dressed-state picture of the control field, we find that multiple spontaneously generated coherence arises due to three close-lying states decaying to the same state. These results are useful in real experiments.
基金Project supported by the National Fundamental Research Program of China(Grant No.2010CB923202)the Fundamental Research Funds for the Central Universities,Chinathe National Natural Science Foundation of China(Grant Nos.61177085,61205117,and 61377097)
文摘Implementation of a nonlocal multi-qubit conditional phase gate is an essential requirement in some quantum infor- mation processing (QIP) tasks. Recently, a novel solid-state cavity quantum electrodynamics (QED) system, in which the nitrogen-vacancy (NV) center in diamond is coupled to a microtoroidal resonator (MTR), has been proposed as a poten- tial system for hybrid quantum information and computing. By virtue of such systems, we present a scheme to realize a nonlocal N-qubit conditional phase gate directly. Our scheme employs a cavity input-output process and single-photon interference, without the use of any auxiliary entanglement pair or classical communication. Considering the currently available technologies, our scheme might be quite useful among different nodes in quantum networks for large-scaled QIP.
基金supported by the National Natural Science Foundation of China(Grant Nos.11264042,61465013,11465020,and 11165015)the Program for Chun Miao Excellent Talents of Jilin Provincial Department of Education(Grant No.201316)the Talent Program of Yanbian University of China(Grant No.950010001)
文摘We design proposals to generate a remote Greenberger-Horne-Zeilinger(GHZ) state and a W state of nitrogenvacancy(NV) centers coupled to microtoroidal resonators(MTRs) through noisy channels by utilizing time-bin encoding processes and fast-optical-switch-based polarization rotation operations.The polarization and phase noise induced by noisy channels generally affect the time of state generation but not its success probability and fidelity.Besides,the above proposals can be generalized to n-qubit between two or among n remote nodes with success probability unity under ideal conditions.Furthennore,the proposals are robust for regular noise-changeable channels for the n-node case.This method is also useful in other remote quantum information processing tasks through noisy channels.
文摘Nitrogen-15 isotope-modified compounds are widely used in medicine, pharmacology, agriculture and various fields of science and their nomenclature is gradually increasing. Their widespread use depends on the availability of inexpensive and simple isotope analysis methods. The present article is an attempt to determine the nitrogen-15 isotope content directly in organic compounds without their conversion. The general principle of possibility of determination of the isotopes of nitrogen directly in organic compounds is proposed. Based on the study of mass-spectra of Carbamide Carbonyldiamide, isocyanic acid and nitrobenzene the mass peaks are selected, by which it is possible to determine the atomic fraction of the isotopes of nitrogen. The respective formulas are proposed.
文摘合成氨(NH_(3))的发展是现代工业进程和人类生存的基石。受氮气(N_(2))化学惰性的限制,当前的合成氨工业能源消耗高并且排放大量的二氧化碳。电化学氮气还原反应(NRR),是有望取代高能耗的Haber-Bosch(HB)合成法的一种绿色可持续的合成氨工艺。然而,因氮气以及析氢竞争富反应(HER)导致电催化氮气还原极低的NH_(3)产率和能量转换效率一直是目前人工固氮领域面临的挑战。在本文中,我们报道了一种具有丰富孔结构的磷掺杂碳(PC)负载Zn_(3)(PO_(4))_(2)/Zn_(2)P_(2)O_(7)纳米复合材料(h-PC/Zn_(3)(PO_(4))_(2)/Zn_(2)P_(2)O_(7)),在酸性和中性介质中将N_(2)高效催化转化为NH_(3)。其独特的分级多孔结构提高了表面粗糙度并加快了氮气在催化剂体相中的扩散,这有利于延长氮气在催化剂表面的停留时间以及提高活性位点的利用效率。而多组分的均匀分布可以调节电子结构并优化反应中间体的吸附行为,进而提高活性位点的本征活性。在0.1mol·L^(-1)HCI电解液中,h-PC/Zn_(3)(PO_(4))_(2)/Zn_(2)P_(2)O_(7)在-0.2 V vs.可逆氢电极(RHE)电位下NH_(3)的产率可以达到38.7±1.2μg·h^(-1)·mgcat^(-1),法拉第效率为19.8%±0.9%。此外;h-PC/Zn_(3)(PO_(4))_(2)/Zn_(2)P_(2)O_(7)在0.1 mol·L^(-1)Na_(2)SO_(4)溶液中同样展现出优异的电催化氮气还原合成氨性能,NH_(3)产率及法拉第效率分别为17.1±0.8μg·h^(-1)·mgcat^(-1)和15.g%±0.6%,明显优于PC/Zn_(3)P_(2)、C/ZnO和大多数报道的非贵金属电催化剂。这种优异的性能主要归因于多孔结构有利于传质及多组分活性位点协同效应。此外,我们采用非原位X射线光电子能谱(XPS)、透射电子显微镜(TEM)和X射线衍射(XRD)等表征手段对NRR测试前后h-PC/Zn_(3)(PO_(4))_(2)/Zn_(2)P_(2)O_(7)的组成和结构变化进行了剖析。在反应后检测到了新增的N物种信号,证明催化剂确实发生了氮气还原反应。本研究提供了一种通过同步构建传质通道并耦合不同的活性位点以协同增强NRR活性和选择性的新思路,这对加快绿色制氨工业化具有重大意义。
基金Project supported by the Natural Science Foundation of Heilongjiang Province,China(Grant No.E201341)the Open Research Program of Key Lab of Superhard Materials of Mudanjiang Normal College,China(Grant No.201302)
文摘In this paper, we have reported an investigation on the evolution of nitrogen structures in diamond crystals which contain nitrogen donor atoms in the range of 1500 ppm-1600 ppm following an annealing treatment at a high pressure of about 6.5 GPa and high temperatures of 1920 K-2120 K. The annealing treatment was found to completely transform nitrogen atoms originally arranged in a single substitutional form (C-center), into a pair form (A-center), indicated from infrared (IR) spectra. The photoluminescence (PL) spectra revealed that a small fraction of nitrogen atoms remained in C-center form, while some nitrogen atoms in A-center form were further transformed into N3 and H3 center structures. In addition, PL spectra have revealed the existence of two newly observed nitrogen-related structures with zero phonon lines at 611 nm and 711 nm. All these findings above are very helpful in understanding the formation mechanism of natural diamond stones of the Ia-type, which contains nitrogen atoms in an aggregated form.