[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six differen...[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six different treatment were set up:blank control(CK1),slow-release urea 75 kg/hm^(2)(C1),slow-release urea 150 kg/hm^(2)(C2),slow-release urea 225 kg/hm^(2)(C3),slow-release urea 300 kg/hm^(2)(C4)and ordinary urea 300 kg/hm^(2)(CK2),to study the change law of dry matter accumulation and translocation in summer maize.[Results]Treatment slow-release urea 225 kg/hm^(2)(C4)showed summer maize yield,dry matter translocation between organs,grain contribution rate and proportion of grain dry matter in the full ripe stage higher than other treatments.Considering the weight loss and cost factors,slow-release urea 225 kg/hm^(2)(C3)could be recommended as the fertilizing amount for summer maize.[Conclusions]This study provides theoretical reference for rational selection of fertilizers for reducing fertilizer application and increasing fertilizer efficiency,and for production of summer maize in Shajiang black soil region.展开更多
[Objective] To understand the effect of nitrogen application on dry matter accumulation and allocation dynamics in broomcorn millet. [Method] The accumulation and distribution of dry matter were studied using cultivar...[Objective] To understand the effect of nitrogen application on dry matter accumulation and allocation dynamics in broomcorn millet. [Method] The accumulation and distribution of dry matter were studied using cultivars Jin Shu 7 and Huang Mizi at different levels of nitrogen fertilizer at the jointing stage. [Result] The results showed that increasing N application led to the increase of green leaf area and the delay of leaf senescence, which was beneficial to the accumulation of dry matter.Appropriate nitrogen application(90 kg/hm2) could coordinate the translocation rate of dry matter among different plant parts, thereby enhancing the yield of broomcorn millet; among different organs, the contribution rate of stem to kernel was greater than that of leaf to kernel; there was obvious correlation between dry matter and yield. For Jin Shu 7, leaf area and dry weight of spike showed significant negative correlation with yield. [Conclusion] The formation of grain yield of broomcorn millet involved the accumulation and allocation of dry matter, the appropriate amount of nitrogen application(90 kg/hm2) could improve the rates of translocation and contribution of dry matter, thereby promoting the yield of broomcorn millet.展开更多
[Objective] The aim of the research was to find the optimal nitrogen application rate, density and seedling age for no-tillage rape in seedling stage. [Method] With the D-optimal quadratic regression design for three ...[Objective] The aim of the research was to find the optimal nitrogen application rate, density and seedling age for no-tillage rape in seedling stage. [Method] With the D-optimal quadratic regression design for three factors, the 310 scheme was designed to study the effects of nitrogen application rate, density and seedling age on dry matter accumulation of no-tillage rape in seedling stage. [Result] With the increase of nitrogen application rate, density and seedling age, the dry matter content appeared like a parabola, increasing firstly and then declining. The change of nitrogen application rate caused greater influence than that of density and seedling age; the interaction effects between nitrogen application rate and density were greater than that between nitrogen application rate and seedling age as well as between density and seedling age. [Conclusion] Considered comprehensively, the dry matter content of no-tillage rape in seedling stage reached the highest level (4 768.2 kg/hm2) when the nitrogen application rate, the density and the seedling age were 195 kg/hm2, 93 000 plants/hm2 and 33 d, respectively.展开更多
It is very important to study eco-physiological processes of plants and to determine quantitative relations between accumulation, distribution of dry matter and environmental factors for regionalization, standardizati...It is very important to study eco-physiological processes of plants and to determine quantitative relations between accumulation, distribution of dry matter and environmental factors for regionalization, standardization and precision agriculture. Meanwhile, global changes, e.g., atmospheric CO2 concentration rising, global warming, and climate abnormity, have been effecting on agricultural productivity. This study provides a theoretical basis for predicting productive potentials and development trends in different agricultural regions. One-year-old black walnut (Juglans hindsii) seedlings were employed as subjects for setting up the dynamic models of dry matter accumulation and distribution, based on mechanistic models of photosynthesis, matter conservation and concentration gradient. Under optimum conditions of soil moisture and mineral nutrient, during the period of the canopy construction, the dry matter accumulation of the canopy conformed to logistic curves; but the accumulation of both total biornass and dry matter of stem-root could be divided into two phases: the first phase was exponential increase, the second was linear increase. The total biomass, dry matter of canopy and stem-root all presented a fluctuant increase, which was affected by the environmental factors. Ratio of daily increase of dry matter in the canopy and the steem-root (dWJdWs) was changeable along with growth periods and environmental factors. At the initial stage of the canopy forming, dW/dWs was larger, about 3.2 on average, which indicated that the photosynthetic product was mainly used to develop leaves; in the midterm, it was about 1.9, which indicated that the distribution of dry matter in the canopy and in the stem-root was relatively balanced; when the plant tended to stop growing, dWl/dWs decreased linearly, and the main distribution of dry matter moved to the roots.展开更多
Readily available chemical fertilizers have resulted in a decline in the use of organic manure(e.g.,green manures),a traditionally sustainable source of nutrients.Based on this,we applied urea at the rate of 270 kg ha...Readily available chemical fertilizers have resulted in a decline in the use of organic manure(e.g.,green manures),a traditionally sustainable source of nutrients.Based on this,we applied urea at the rate of 270 kg ha−1 with and without green manure in order to assess nitrogen(N)productivity in a double rice cropping system in 2017.In particular,treatment combinations were as follows:winter fallow rice-rice(WF-R-R),milk vetch rice-rice(MV-R-R),oil-seed rape rice-rice(R-R-R)and potato crop rice-rice(P-R-R).Results revealed that green manure significantly(p≤0.05)improved the soil chemical properties and net soil organic carbon content increased by an average 117.47%,total nitrogen(N)by 28.41%,available N by 26.64%,total phosphorus(P)by 37.77%,available P by 20.48%and available potassium(K)by 33.10%than WF-R-R,however pH was reduced by 3.30%across the seasons.Similarly,net dry matter accumulation rate enhanced in green manure applied treatments and ranked in order:P-R-R>R-R-R>MV-R-R>WF-R-R.Furthermore,the total leaf dry matter transport(t ha−1)for the P-R-R in both seasons was significantly higher by an average 11.2%,7.2%and 36%than MV-R-R,R-R-R,and WF-R-R,respectively.In addition,net total nitrogen accumulation(kg ha−1)was found higher in green manure applied plots compared to the control.Yield and yield attributed traits were observed maximum in green manure applied plots,with treatments ranking as follows:P-R-R>R-R-R>MV-R-R>WF-R-R.Thus,results obtained highlight ability of green manure to sustainably improve soil quality and rice yield.展开更多
Nitrogen fertilizer is an important factor for crop production. The N application strategies named as former nitrogen moved backward( FNMB) are tested in three ecological regions to optimize the N application in rice....Nitrogen fertilizer is an important factor for crop production. The N application strategies named as former nitrogen moved backward( FNMB) are tested in three ecological regions to optimize the N application in rice. The dry matter accumulation and distribution,yield and quality are studied to understand the formation of yield and quality of rice under different N application strategies. The result indicates that former nitrogen moved backward( FNMB) can increase tiller number and dry matter accumulation; effective ears and yield can be increased with the increase of fertilization; rational nitrogen application can help to establish scientific group structure,harmonize yield component,and then achieve high ratio of input to output and benefit.展开更多
The purpose of this study was to identify the physiological mechanism underlying the effects of high temperature and waterlogging on summer maize.The stem development and yield of the maize hybrid Denghai 605 in respo...The purpose of this study was to identify the physiological mechanism underlying the effects of high temperature and waterlogging on summer maize.The stem development and yield of the maize hybrid Denghai 605 in response to high-temperature stress,waterlogging stress,and their combination applied for six days at the third-leaf,sixth-leaf,and tasseling stages were recorded.The combined stresses reduced lignin biosynthetic enzyme activity and lignin accumulation,leading to abnormal stem development.Reduction of the area and number of vascular bundles in stems led to reduced dry matter accumulation and allocation.Decreased grain dry weight at all three stages reduced grain yield relative to a control.In summary,high temperature,waterlogging,and their combined stress impaired stem development and grain yield of summer maize.The combined stresses were more damaging than either stress alone.展开更多
文摘[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six different treatment were set up:blank control(CK1),slow-release urea 75 kg/hm^(2)(C1),slow-release urea 150 kg/hm^(2)(C2),slow-release urea 225 kg/hm^(2)(C3),slow-release urea 300 kg/hm^(2)(C4)and ordinary urea 300 kg/hm^(2)(CK2),to study the change law of dry matter accumulation and translocation in summer maize.[Results]Treatment slow-release urea 225 kg/hm^(2)(C4)showed summer maize yield,dry matter translocation between organs,grain contribution rate and proportion of grain dry matter in the full ripe stage higher than other treatments.Considering the weight loss and cost factors,slow-release urea 225 kg/hm^(2)(C3)could be recommended as the fertilizing amount for summer maize.[Conclusions]This study provides theoretical reference for rational selection of fertilizers for reducing fertilizer application and increasing fertilizer efficiency,and for production of summer maize in Shajiang black soil region.
基金Supported by the Earmarked Fund for China Agriculture Research System(CARS-07-12.5-A12)
文摘[Objective] To understand the effect of nitrogen application on dry matter accumulation and allocation dynamics in broomcorn millet. [Method] The accumulation and distribution of dry matter were studied using cultivars Jin Shu 7 and Huang Mizi at different levels of nitrogen fertilizer at the jointing stage. [Result] The results showed that increasing N application led to the increase of green leaf area and the delay of leaf senescence, which was beneficial to the accumulation of dry matter.Appropriate nitrogen application(90 kg/hm2) could coordinate the translocation rate of dry matter among different plant parts, thereby enhancing the yield of broomcorn millet; among different organs, the contribution rate of stem to kernel was greater than that of leaf to kernel; there was obvious correlation between dry matter and yield. For Jin Shu 7, leaf area and dry weight of spike showed significant negative correlation with yield. [Conclusion] The formation of grain yield of broomcorn millet involved the accumulation and allocation of dry matter, the appropriate amount of nitrogen application(90 kg/hm2) could improve the rates of translocation and contribution of dry matter, thereby promoting the yield of broomcorn millet.
基金Supported by the"11th Five-Year Plan"Significant Key Program of Guizhou Province[Guizhou Technology and Agriculture Co-word(2000)1109]Graduate Student Innovation Fund Project of Guizhou University[(2006)009]~~
文摘[Objective] The aim of the research was to find the optimal nitrogen application rate, density and seedling age for no-tillage rape in seedling stage. [Method] With the D-optimal quadratic regression design for three factors, the 310 scheme was designed to study the effects of nitrogen application rate, density and seedling age on dry matter accumulation of no-tillage rape in seedling stage. [Result] With the increase of nitrogen application rate, density and seedling age, the dry matter content appeared like a parabola, increasing firstly and then declining. The change of nitrogen application rate caused greater influence than that of density and seedling age; the interaction effects between nitrogen application rate and density were greater than that between nitrogen application rate and seedling age as well as between density and seedling age. [Conclusion] Considered comprehensively, the dry matter content of no-tillage rape in seedling stage reached the highest level (4 768.2 kg/hm2) when the nitrogen application rate, the density and the seedling age were 195 kg/hm2, 93 000 plants/hm2 and 33 d, respectively.
基金funded by the Superior Cultivars Program of Shandong Province Government and Open Foundation Program of Chinese Academy of Sciences,China
文摘It is very important to study eco-physiological processes of plants and to determine quantitative relations between accumulation, distribution of dry matter and environmental factors for regionalization, standardization and precision agriculture. Meanwhile, global changes, e.g., atmospheric CO2 concentration rising, global warming, and climate abnormity, have been effecting on agricultural productivity. This study provides a theoretical basis for predicting productive potentials and development trends in different agricultural regions. One-year-old black walnut (Juglans hindsii) seedlings were employed as subjects for setting up the dynamic models of dry matter accumulation and distribution, based on mechanistic models of photosynthesis, matter conservation and concentration gradient. Under optimum conditions of soil moisture and mineral nutrient, during the period of the canopy construction, the dry matter accumulation of the canopy conformed to logistic curves; but the accumulation of both total biornass and dry matter of stem-root could be divided into two phases: the first phase was exponential increase, the second was linear increase. The total biomass, dry matter of canopy and stem-root all presented a fluctuant increase, which was affected by the environmental factors. Ratio of daily increase of dry matter in the canopy and the steem-root (dWJdWs) was changeable along with growth periods and environmental factors. At the initial stage of the canopy forming, dW/dWs was larger, about 3.2 on average, which indicated that the photosynthetic product was mainly used to develop leaves; in the midterm, it was about 1.9, which indicated that the distribution of dry matter in the canopy and in the stem-root was relatively balanced; when the plant tended to stop growing, dWl/dWs decreased linearly, and the main distribution of dry matter moved to the roots.
基金This research was financially supported by the National Key Research and Development Project(2018YFD20030503)of China.
文摘Readily available chemical fertilizers have resulted in a decline in the use of organic manure(e.g.,green manures),a traditionally sustainable source of nutrients.Based on this,we applied urea at the rate of 270 kg ha−1 with and without green manure in order to assess nitrogen(N)productivity in a double rice cropping system in 2017.In particular,treatment combinations were as follows:winter fallow rice-rice(WF-R-R),milk vetch rice-rice(MV-R-R),oil-seed rape rice-rice(R-R-R)and potato crop rice-rice(P-R-R).Results revealed that green manure significantly(p≤0.05)improved the soil chemical properties and net soil organic carbon content increased by an average 117.47%,total nitrogen(N)by 28.41%,available N by 26.64%,total phosphorus(P)by 37.77%,available P by 20.48%and available potassium(K)by 33.10%than WF-R-R,however pH was reduced by 3.30%across the seasons.Similarly,net dry matter accumulation rate enhanced in green manure applied treatments and ranked in order:P-R-R>R-R-R>MV-R-R>WF-R-R.Furthermore,the total leaf dry matter transport(t ha−1)for the P-R-R in both seasons was significantly higher by an average 11.2%,7.2%and 36%than MV-R-R,R-R-R,and WF-R-R,respectively.In addition,net total nitrogen accumulation(kg ha−1)was found higher in green manure applied plots compared to the control.Yield and yield attributed traits were observed maximum in green manure applied plots,with treatments ranking as follows:P-R-R>R-R-R>MV-R-R>WF-R-R.Thus,results obtained highlight ability of green manure to sustainably improve soil quality and rice yield.
文摘Nitrogen fertilizer is an important factor for crop production. The N application strategies named as former nitrogen moved backward( FNMB) are tested in three ecological regions to optimize the N application in rice. The dry matter accumulation and distribution,yield and quality are studied to understand the formation of yield and quality of rice under different N application strategies. The result indicates that former nitrogen moved backward( FNMB) can increase tiller number and dry matter accumulation; effective ears and yield can be increased with the increase of fertilization; rational nitrogen application can help to establish scientific group structure,harmonize yield component,and then achieve high ratio of input to output and benefit.
基金supported by the University Youth Innovation Science and Technology Support Program of Shandong Province(2021KJ073)the Postdoctoral Innovation Program of Shandong Province(202003039)China Agriculture Research System(CARS-02-21).
文摘The purpose of this study was to identify the physiological mechanism underlying the effects of high temperature and waterlogging on summer maize.The stem development and yield of the maize hybrid Denghai 605 in response to high-temperature stress,waterlogging stress,and their combination applied for six days at the third-leaf,sixth-leaf,and tasseling stages were recorded.The combined stresses reduced lignin biosynthetic enzyme activity and lignin accumulation,leading to abnormal stem development.Reduction of the area and number of vascular bundles in stems led to reduced dry matter accumulation and allocation.Decreased grain dry weight at all three stages reduced grain yield relative to a control.In summary,high temperature,waterlogging,and their combined stress impaired stem development and grain yield of summer maize.The combined stresses were more damaging than either stress alone.