The alien woody legume, black locust (Robinia pseudoaca-cia), has invaded Japanese black pine (Pinus thunbergii) forests located in Japan’s coastal plain and hill regions where gaps are formed in pine forests aft...The alien woody legume, black locust (Robinia pseudoaca-cia), has invaded Japanese black pine (Pinus thunbergii) forests located in Japan’s coastal plain and hill regions where gaps are formed in pine forests after nematode infestation. Nitrogen fixation by legumes acceler-ates N cycling in forest ecosystems. We studied temporal change in the annual tree-ring resolution N stable isotope composition (δ15N, a per mil deviation of δ15N/14N ratio, relative to atmospheric N2δ15N=0‰) at two natural locations of Japanese black pine forest with black locust that differed in the time since black locust establishment (Shohnai in north-east and Kita-Kyushu in southwest Japan). Analyzed tree-rings covered the period from 1990/1992 to 2009. N acquisition by Japanese black pine from black locust N input to the soil was evidenced by temporal shifting of N stable isotope composition on the annual pine tree rings. With pro-gressive development of the forest stand,δ15N values of earlier tree-ringsδ15N of -5‰) from black pine associated with black locust shifted to-wards values similar to those of black locustδ15N values nearly to-1‰), which suggests acquisition of N by N2 fixation (Shohnai site). In con-trast, in a forest where black locust had settled for two or three genera-tions, in a black pine stand (Kita-Kyushu site), longer periods of N en-richment in the soil were reflected in the elevated tree-ringδ15N values of newly established black pine trees. Based on tree-ringδ15N data from the Shohnai site, we determined that about 10 years after black locust establishment, soil N had already been enriched by black locust N, this, in turn, contributed to N fertilization of surrounding trees in mixed stands.展开更多
Agricultural environments deteriorate due to excess nitrogen application. Breeding for low nitrogen responsive genotypes can reduce soil nitrogen input. Rice genotypes respond variably to soil available nitrogen. The ...Agricultural environments deteriorate due to excess nitrogen application. Breeding for low nitrogen responsive genotypes can reduce soil nitrogen input. Rice genotypes respond variably to soil available nitrogen. The present study attempted quantification of genotype x nitrogen level interaction and mapping of quantitative trait loci (QTLs) associated with nitrogen use efficiency (NUE) and other associated agronomic traits. Twelve parameters were observed across a set of 82 double haploid (DH) lines derived from IR64/Azucena. Three nitrogen regimes namely, native (0 kg/ha; no nitrogen applied), optimum (100 kg/ha) and high (200 kg/ha) replicated thrice were the environments. The parents and DH lines were significantly varying for all traits under different nitrogen regimes. All traits except plant height recorded significant genotype × environment interaction. Individual plant yield was positively correlated with nitrogen use efficiency and nitrogen uptake. Sixteen QTLs were detected by composite interval mapping. Eleven QTLs showed significant QTL × environment interactions. On chromosome 3, seven QTLs were detected associated with nitrogen use, plant yield and associated traits. A QTL region between markers RZ678, RZ574 and RZ284 was associated with nitrogen use and yield. This chromosomal region was enriched with expressed gene sequences of known key nitrogen assimilation genes.展开更多
Background:Alpine coniferous forest ecosystems dominated by ectomycorrhizal(ECM)tree species are generally characterized by low soil nitrogen(N)availability but stabilized plant productivity.Thus,elucidating potential...Background:Alpine coniferous forest ecosystems dominated by ectomycorrhizal(ECM)tree species are generally characterized by low soil nitrogen(N)availability but stabilized plant productivity.Thus,elucidating potential mechanisms by which plants maintain efficient N acquisition is crucial for formulating optimized management practices in these ecosystems.Methods:We summarize empirical studies conducted at a long-term field monitoring station in the alpine coniferous forests on the eastern Tibetan Plateau,China.We propose a root-soil interaction-based framework encompassing key components including soil N supply,microbial N transformation,and root N uptake in the rhizosphere.Results:We highlight that,(i)a considerable size of soil dissolved organic N pool mitigates plant dependence on inorganic N supply;(ii)ectomycorrhizal roots regulate soil N transformations through both rhizosphere and hyphosphere effects,providing a driving force for scavenging soil N;(iii)a complementary pattern of plant uptake of different soil N forms via root-and mycorrhizal mycelium-pathways enables efficient N acquisitions in response to changing soil N availability.Conclusions:Multiple rhizosphere processes abovementioned collaboratively contribute to efficient plant N acquisition in alpine coniferous forests.Finally,we identify several research outlooks and directions to improve the understanding and prediction of ecosystem functions in alpine coniferous forests under on-going global changes.展开更多
The stress hormone ethylene plays a key role in plant adaptation to adverse environmental conditions.Nitrogen(N)is the most quantitatively required mineral nutrient for plants,and its availability is a major determina...The stress hormone ethylene plays a key role in plant adaptation to adverse environmental conditions.Nitrogen(N)is the most quantitatively required mineral nutrient for plants,and its availability is a major determinant for crop production.Changes in N availability or N forms can alter ethylene biosynthesis and/or signaling.Ethylene serves as an important cellular signal to mediate root system architecture adaptation,N uptake and translocation,ammonium toxicity,anthocyanin accumulation,and premature senescence,thereby adapting plant growth and development to external N status.Here,we review the ethylenemediated morphological and physiological responses and highlight how ethylene transduces the N signals to the adaptive responses.We specifically discuss the N-ethylene relations in rice,an important cereal crop in which ethylene is essential for its hypoxia survival.展开更多
文摘The alien woody legume, black locust (Robinia pseudoaca-cia), has invaded Japanese black pine (Pinus thunbergii) forests located in Japan’s coastal plain and hill regions where gaps are formed in pine forests after nematode infestation. Nitrogen fixation by legumes acceler-ates N cycling in forest ecosystems. We studied temporal change in the annual tree-ring resolution N stable isotope composition (δ15N, a per mil deviation of δ15N/14N ratio, relative to atmospheric N2δ15N=0‰) at two natural locations of Japanese black pine forest with black locust that differed in the time since black locust establishment (Shohnai in north-east and Kita-Kyushu in southwest Japan). Analyzed tree-rings covered the period from 1990/1992 to 2009. N acquisition by Japanese black pine from black locust N input to the soil was evidenced by temporal shifting of N stable isotope composition on the annual pine tree rings. With pro-gressive development of the forest stand,δ15N values of earlier tree-ringsδ15N of -5‰) from black pine associated with black locust shifted to-wards values similar to those of black locustδ15N values nearly to-1‰), which suggests acquisition of N by N2 fixation (Shohnai site). In con-trast, in a forest where black locust had settled for two or three genera-tions, in a black pine stand (Kita-Kyushu site), longer periods of N en-richment in the soil were reflected in the elevated tree-ringδ15N values of newly established black pine trees. Based on tree-ringδ15N data from the Shohnai site, we determined that about 10 years after black locust establishment, soil N had already been enriched by black locust N, this, in turn, contributed to N fertilization of surrounding trees in mixed stands.
基金the International Rice Biotechnology Program Schemes RF98001 #642 and RF 98001 #700 from the Rockefeller Foundation, New Yorkto M. Maheswaran
文摘Agricultural environments deteriorate due to excess nitrogen application. Breeding for low nitrogen responsive genotypes can reduce soil nitrogen input. Rice genotypes respond variably to soil available nitrogen. The present study attempted quantification of genotype x nitrogen level interaction and mapping of quantitative trait loci (QTLs) associated with nitrogen use efficiency (NUE) and other associated agronomic traits. Twelve parameters were observed across a set of 82 double haploid (DH) lines derived from IR64/Azucena. Three nitrogen regimes namely, native (0 kg/ha; no nitrogen applied), optimum (100 kg/ha) and high (200 kg/ha) replicated thrice were the environments. The parents and DH lines were significantly varying for all traits under different nitrogen regimes. All traits except plant height recorded significant genotype × environment interaction. Individual plant yield was positively correlated with nitrogen use efficiency and nitrogen uptake. Sixteen QTLs were detected by composite interval mapping. Eleven QTLs showed significant QTL × environment interactions. On chromosome 3, seven QTLs were detected associated with nitrogen use, plant yield and associated traits. A QTL region between markers RZ678, RZ574 and RZ284 was associated with nitrogen use and yield. This chromosomal region was enriched with expressed gene sequences of known key nitrogen assimilation genes.
基金supported jointly by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(No.2019QZKK0301)the Chinese Academy of Sciences(CAS)Interdisciplinary Innovation Team(No.xbzg-zysys-202112)+1 种基金the National Natural Science Foundation of China(Nos.32171757,31872700)Bartosz Adamczyk acknowledges the Academy of Finland(No.330136)。
文摘Background:Alpine coniferous forest ecosystems dominated by ectomycorrhizal(ECM)tree species are generally characterized by low soil nitrogen(N)availability but stabilized plant productivity.Thus,elucidating potential mechanisms by which plants maintain efficient N acquisition is crucial for formulating optimized management practices in these ecosystems.Methods:We summarize empirical studies conducted at a long-term field monitoring station in the alpine coniferous forests on the eastern Tibetan Plateau,China.We propose a root-soil interaction-based framework encompassing key components including soil N supply,microbial N transformation,and root N uptake in the rhizosphere.Results:We highlight that,(i)a considerable size of soil dissolved organic N pool mitigates plant dependence on inorganic N supply;(ii)ectomycorrhizal roots regulate soil N transformations through both rhizosphere and hyphosphere effects,providing a driving force for scavenging soil N;(iii)a complementary pattern of plant uptake of different soil N forms via root-and mycorrhizal mycelium-pathways enables efficient N acquisitions in response to changing soil N availability.Conclusions:Multiple rhizosphere processes abovementioned collaboratively contribute to efficient plant N acquisition in alpine coniferous forests.Finally,we identify several research outlooks and directions to improve the understanding and prediction of ecosystem functions in alpine coniferous forests under on-going global changes.
基金supported by the National Key R&D Program of China(2021YFF1000400)Laboratory of Lingnan Modern Agriculture Project(NG2021001)。
文摘The stress hormone ethylene plays a key role in plant adaptation to adverse environmental conditions.Nitrogen(N)is the most quantitatively required mineral nutrient for plants,and its availability is a major determinant for crop production.Changes in N availability or N forms can alter ethylene biosynthesis and/or signaling.Ethylene serves as an important cellular signal to mediate root system architecture adaptation,N uptake and translocation,ammonium toxicity,anthocyanin accumulation,and premature senescence,thereby adapting plant growth and development to external N status.Here,we review the ethylenemediated morphological and physiological responses and highlight how ethylene transduces the N signals to the adaptive responses.We specifically discuss the N-ethylene relations in rice,an important cereal crop in which ethylene is essential for its hypoxia survival.