Yield performance in cereal and legume intercropping is related to nutrient management,however,the yield response of companion crops to nitrogen(N)input is inconclusive and only limited efforts have focused on ratione...Yield performance in cereal and legume intercropping is related to nutrient management,however,the yield response of companion crops to nitrogen(N)input is inconclusive and only limited efforts have focused on rationed phosphorous(P)fertilization.In this study,two multi-year field experiments were implemented from 2014-2019 under identical conditions.Two factors in a randomized complete block design were adopted in both experiments.In field experiment 1,the two factors included three planting patterns(mono-cropped wheat(MW),mono-cropped faba bean(MF),and wheat and faba bean intercropping(W//F))and four N application rates(N0,0 kg N ha^(-1);N1,90 and 45 kg N ha^(-1) for wheat and faba beans,respectively;N2,180 and 90 kg N ha^(-1) for wheat and faba beans,respectively;and N3,270 and 135 kg N ha^(-1) for wheat and faba beans,respectively).In field experiment 2,the two factors included three P application rates(P0,0 kg P_(2)O_(5) ha^(-1);P1,45 kg P_(2)O_(5) ha^(-1);and P2,90 kg P_(2)O_(5) ha^(-1))and the same three planting patterns(MW,MF,and W//F).The yield performances of inter-and mono-cropped wheat and faba beans under different N and P application rates were analyzed and the optimal N and P rates for intercropped wheat(IW)and MW were estimated.The results revealed that intercropping favored wheat yield and was adverse to faba bean yield.Wheat yield increased by 18-26%,but faba bean yield decreased by 5-21% in W//F compared to MW and MF,respectively.The stimulated IW yield drove the yield advantage in W//F with an average land equivalent ratio(LER)of 1.12.N and P fertilization benefited IW yield,but reduced intercropped faba bean(IF)yield.Nevertheless,the partial LER of wheat(pLER_(wheat))decreased with increasing N application rates,and the partial LER of faba bean(pLER_(faba bean))decreased with increasing P application rates.Thus,LER decreased as N input increased and tended to decline as P rates increased.IW maintained a similar yield as MW,even under reduced 40-50% N fertilizer and 30-40% P fertilizer conditions.The estimated optimum N application rates for IW and MW were 150 and 168 kg ha^(-1),respectively,and 63 and 62 kg ha^(-1) for P_(2)O_(5),respectively.In conclusion,W//F exhibited yield advantages due to stimulated IW yield,but the intercropping yield benefit decreased as N and P inputs increased.Thus,it was concluded that modulated N and P rates could maximize the economic and ecological functions of intercropping.Based on the results,rates of 150 kg N ha^(-1) and 60 kg P_(2)O_(5) ha^(-1) are recommended for IW production in southwestern China and places with similar conditions.展开更多
[Objectives]To study the effect of nitrogen(N)on the growth demand of summer peanuts under a certain level of phosphorus and potassium fertilizers,and to carry out experiments on nitrogen fertilizer control of summer ...[Objectives]To study the effect of nitrogen(N)on the growth demand of summer peanuts under a certain level of phosphorus and potassium fertilizers,and to carry out experiments on nitrogen fertilizer control of summer peanuts.[Methods]Four treatments were set up in the experiment:no-nitrogen plot(N 0P_(4)K_(4)),optimized nitrogen plot(N_(7)P_(4)K_(4)),70%optimized nitrogen plot(N_(5)P_(4)K_(4)),130%optimized nitrogen plot(N 9P 4K 4),repeated 3 times,and arranged in random blocks.The area of the plot was 42 m^(2),ridges were set between the plots,and protective rows of more than 1 m were set around the experimental site.The types of fertilizers were urea,superphosphate,and imported potassium chloride,and the variety of peanuts was Linhua 5.Except for the level of fertilization,other agricultural operations were the same,and soil sampling tests,field records,and yield testing were carried out according to the requirements of the plan.[Results]On the basis of 60 kg/ha of phosphorus and potassium fertilizer application,the optimum economical fertilizer application rate and the highest application rate of pure nitrogen were about 115.20 and 131.25 kg/ha,respectively.[Conclusions]This study is expected to provide a certain basis for the high-quality and high-yield summer peanuts in southern Shandong area.展开更多
[Objective] The aim was to modify the application amount of N,P and K fertilizer so as to provide a reference for establishing balanced fertilization index system of banana.[Method]The N,P and K fertilizer "3414" te...[Objective] The aim was to modify the application amount of N,P and K fertilizer so as to provide a reference for establishing balanced fertilization index system of banana.[Method]The N,P and K fertilizer "3414" test was carried out on banana,and then regression analysis was performed on the fertilizer effect.Ternary quadratic,binary quadric and one-variable quadratic regression equations for the fertilizer effect on the banana yield were constructed.[Result]Suitable amount of N,P and K fertilizer had significant yield improving effect,whereas overdose of fertilizer application led to decreasing of utilization rate of fertilizer.Therefore,suitable amount of N,P and K fertilizer should be selected in production.It could be concluded that one-variable quadratic regression equations was the best model to calculate the suitable fertilizer amount.The best yield range of banana in the tested field was 44.193-45.904 t/hm2,while the corresponding optimum application amount of N,P2O5 and K2O was 795.1,262.3 and 1 236.9 kg/hm2 respectively,and the ratio among nitrogen,phosphorus and potassium are 1∶0.33∶1.55.[Conclusion]The result in this study could provide references for the soil types similar to the tested field.展开更多
With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield a...With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield and nitrogen efficiency of autumn maize.Increase in planting density with reduced nitrogen fertilizer application is one of the important paths to achieve high yield and high nitrogen utilization efficiency.Meanwhile,the effect needs to be verified for autumn maize.The semi-compact autumn maize variety Qinyu 58 was planted under different planting densities and nitrogen fertilizer amounts with the split plot design.Different nitrogen application rates were arranged in the main plots,including the conventional nitrogen application(N300,300 kg/hm^2),30%reduction from the conventional treatment(N210,210 kg/hm^2)and no nitrogen application(N0).Different planting densities were arranged in the sub-split plots,including the conventional planting density(D60,60000 plants/hm2),medium density(D78,78000 plants/hm^2)and high density(D93,93000 plants/hm2).The effects of nitrogen fertilizer,planting density and their interaction effects on canopy structure,dry matter accumulation,yield and nitrogen use efficiency of autumn maize were studied.The nitrogen application rate and planting density had obvious interaction effects on the yield formation of autumn maize.Compared with the conventional cultivation(N300D60),increasing the planting density with 30%reduction in nitrogen application(N210)can obviously increase the canopy light interception rate,LAI,dry matter accumulation and yield.However,there was no significant change in canopy light interception rate,LAI,dry matter accumulation,grain weight and yield between D93 and D78.Compared with N300D60,nitrogen translocation efficiency and nitrogen contribution proportion to grain nitrogen did not change significantly in autumn maize grown under N210 and D78 treatments,whereas nitrogen partial productivity,nitrogen agronomic efficiency and recovery and utilization efficiency of nitrogen fertilizer increased significantly.Moreover,high density(D93)planting at N210 plots significantly improved nitrogen transport efficiency and utilization efficiency in autumn maize.Therefore,the suitable planting density of the autumn maize variety Qinyu 58 in Hubei Province is recommended a value of 78000 plants/hm^2,with the nitrogen application rate of 210 kg/hm2,which can achieve the target of higher yield by increasing density and reducing nitrogen.展开更多
优化氮肥施用和秸秆还田技术为途径的农业管理措施被认为是提升农业可持续性的有效手段,然而当前关于氮肥和秸秆还田对小麦产量和N_(2)O排放影响的研究仍十分有限。为此,本研究基于2000—2022年发表的关于长江中下游流域氮肥和秸秆投入...优化氮肥施用和秸秆还田技术为途径的农业管理措施被认为是提升农业可持续性的有效手段,然而当前关于氮肥和秸秆还田对小麦产量和N_(2)O排放影响的研究仍十分有限。为此,本研究基于2000—2022年发表的关于长江中下游流域氮肥和秸秆投入下小麦产量和N_(2)O排放变化的文献,运用随机森林建模,定量分析氮肥和秸秆还田对小麦产量和N_(2)O排放的影响,并结合情景设置进行了特定地点的小麦产量和N_(2)O排放模拟,同时评估了碳排放强度(CEE)和净生态系统经济效益(NEEB)。结果表明,建立的区域尺度小麦产量与N_(2)O排放对氮秸互作响应的随机森林模型,验证结果R^(2)分别为0.66和0.65,RMSE分别为0.70和1.11。结果表明施氮量和土壤有机质是影响小麦产量和N_(2)O排放的重要因素。综合来看,达到最大产量所需的氮肥量为208~212 kg hm^(-2),达到最小CEE所需的氮肥量为113~130 kg hm^(-2),达到最高的NEEB所需的氮肥量为202~205 kg hm^(-2),其中在6.75 t hm^(-2)的秸秆投入下施用202 kg hm^(-2)的氮肥可以获得最高的生态收益1.37万元。优化氮肥和秸秆投入具备减少作物碳排放强度并获得最大净生态环境效益的潜力。展开更多
Different ratios of NPK were adopted in this research to study its effects on the objective traits of 2 early forage-rice varieties, and to obtain the optimum ratio to further improve the application technique in theo...Different ratios of NPK were adopted in this research to study its effects on the objective traits of 2 early forage-rice varieties, and to obtain the optimum ratio to further improve the application technique in theory. At the same time, the possibility of increasing yield and protein content in the grain through cultivation technique was also studied. The conclusions were:展开更多
基金supported by the National Key R&D Program of China(2017YFD0200200 and 2017YFD0200207)the National Natural Science Foundation of China(31760611,32060718 and 31560581)the Yunnan Agricultural Foundation Joint Project,China(2018FG001-071)。
文摘Yield performance in cereal and legume intercropping is related to nutrient management,however,the yield response of companion crops to nitrogen(N)input is inconclusive and only limited efforts have focused on rationed phosphorous(P)fertilization.In this study,two multi-year field experiments were implemented from 2014-2019 under identical conditions.Two factors in a randomized complete block design were adopted in both experiments.In field experiment 1,the two factors included three planting patterns(mono-cropped wheat(MW),mono-cropped faba bean(MF),and wheat and faba bean intercropping(W//F))and four N application rates(N0,0 kg N ha^(-1);N1,90 and 45 kg N ha^(-1) for wheat and faba beans,respectively;N2,180 and 90 kg N ha^(-1) for wheat and faba beans,respectively;and N3,270 and 135 kg N ha^(-1) for wheat and faba beans,respectively).In field experiment 2,the two factors included three P application rates(P0,0 kg P_(2)O_(5) ha^(-1);P1,45 kg P_(2)O_(5) ha^(-1);and P2,90 kg P_(2)O_(5) ha^(-1))and the same three planting patterns(MW,MF,and W//F).The yield performances of inter-and mono-cropped wheat and faba beans under different N and P application rates were analyzed and the optimal N and P rates for intercropped wheat(IW)and MW were estimated.The results revealed that intercropping favored wheat yield and was adverse to faba bean yield.Wheat yield increased by 18-26%,but faba bean yield decreased by 5-21% in W//F compared to MW and MF,respectively.The stimulated IW yield drove the yield advantage in W//F with an average land equivalent ratio(LER)of 1.12.N and P fertilization benefited IW yield,but reduced intercropped faba bean(IF)yield.Nevertheless,the partial LER of wheat(pLER_(wheat))decreased with increasing N application rates,and the partial LER of faba bean(pLER_(faba bean))decreased with increasing P application rates.Thus,LER decreased as N input increased and tended to decline as P rates increased.IW maintained a similar yield as MW,even under reduced 40-50% N fertilizer and 30-40% P fertilizer conditions.The estimated optimum N application rates for IW and MW were 150 and 168 kg ha^(-1),respectively,and 63 and 62 kg ha^(-1) for P_(2)O_(5),respectively.In conclusion,W//F exhibited yield advantages due to stimulated IW yield,but the intercropping yield benefit decreased as N and P inputs increased.Thus,it was concluded that modulated N and P rates could maximize the economic and ecological functions of intercropping.Based on the results,rates of 150 kg N ha^(-1) and 60 kg P_(2)O_(5) ha^(-1) are recommended for IW production in southwestern China and places with similar conditions.
基金Supported by the Project of Peanut Innovation Team of Shandong Province Modern Agricultural Industry Technology System(SDAIT-05-022).
文摘[Objectives]To study the effect of nitrogen(N)on the growth demand of summer peanuts under a certain level of phosphorus and potassium fertilizers,and to carry out experiments on nitrogen fertilizer control of summer peanuts.[Methods]Four treatments were set up in the experiment:no-nitrogen plot(N 0P_(4)K_(4)),optimized nitrogen plot(N_(7)P_(4)K_(4)),70%optimized nitrogen plot(N_(5)P_(4)K_(4)),130%optimized nitrogen plot(N 9P 4K 4),repeated 3 times,and arranged in random blocks.The area of the plot was 42 m^(2),ridges were set between the plots,and protective rows of more than 1 m were set around the experimental site.The types of fertilizers were urea,superphosphate,and imported potassium chloride,and the variety of peanuts was Linhua 5.Except for the level of fertilization,other agricultural operations were the same,and soil sampling tests,field records,and yield testing were carried out according to the requirements of the plan.[Results]On the basis of 60 kg/ha of phosphorus and potassium fertilizer application,the optimum economical fertilizer application rate and the highest application rate of pure nitrogen were about 115.20 and 131.25 kg/ha,respectively.[Conclusions]This study is expected to provide a certain basis for the high-quality and high-yield summer peanuts in southern Shandong area.
基金Supported by National Science and Technology Support Program(2007BAD89B14)Science and Technology Project of Guangdong Province(2009B020201011)~~
文摘[Objective] The aim was to modify the application amount of N,P and K fertilizer so as to provide a reference for establishing balanced fertilization index system of banana.[Method]The N,P and K fertilizer "3414" test was carried out on banana,and then regression analysis was performed on the fertilizer effect.Ternary quadratic,binary quadric and one-variable quadratic regression equations for the fertilizer effect on the banana yield were constructed.[Result]Suitable amount of N,P and K fertilizer had significant yield improving effect,whereas overdose of fertilizer application led to decreasing of utilization rate of fertilizer.Therefore,suitable amount of N,P and K fertilizer should be selected in production.It could be concluded that one-variable quadratic regression equations was the best model to calculate the suitable fertilizer amount.The best yield range of banana in the tested field was 44.193-45.904 t/hm2,while the corresponding optimum application amount of N,P2O5 and K2O was 795.1,262.3 and 1 236.9 kg/hm2 respectively,and the ratio among nitrogen,phosphorus and potassium are 1∶0.33∶1.55.[Conclusion]The result in this study could provide references for the soil types similar to the tested field.
文摘With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield and nitrogen efficiency of autumn maize.Increase in planting density with reduced nitrogen fertilizer application is one of the important paths to achieve high yield and high nitrogen utilization efficiency.Meanwhile,the effect needs to be verified for autumn maize.The semi-compact autumn maize variety Qinyu 58 was planted under different planting densities and nitrogen fertilizer amounts with the split plot design.Different nitrogen application rates were arranged in the main plots,including the conventional nitrogen application(N300,300 kg/hm^2),30%reduction from the conventional treatment(N210,210 kg/hm^2)and no nitrogen application(N0).Different planting densities were arranged in the sub-split plots,including the conventional planting density(D60,60000 plants/hm2),medium density(D78,78000 plants/hm^2)and high density(D93,93000 plants/hm2).The effects of nitrogen fertilizer,planting density and their interaction effects on canopy structure,dry matter accumulation,yield and nitrogen use efficiency of autumn maize were studied.The nitrogen application rate and planting density had obvious interaction effects on the yield formation of autumn maize.Compared with the conventional cultivation(N300D60),increasing the planting density with 30%reduction in nitrogen application(N210)can obviously increase the canopy light interception rate,LAI,dry matter accumulation and yield.However,there was no significant change in canopy light interception rate,LAI,dry matter accumulation,grain weight and yield between D93 and D78.Compared with N300D60,nitrogen translocation efficiency and nitrogen contribution proportion to grain nitrogen did not change significantly in autumn maize grown under N210 and D78 treatments,whereas nitrogen partial productivity,nitrogen agronomic efficiency and recovery and utilization efficiency of nitrogen fertilizer increased significantly.Moreover,high density(D93)planting at N210 plots significantly improved nitrogen transport efficiency and utilization efficiency in autumn maize.Therefore,the suitable planting density of the autumn maize variety Qinyu 58 in Hubei Province is recommended a value of 78000 plants/hm^2,with the nitrogen application rate of 210 kg/hm2,which can achieve the target of higher yield by increasing density and reducing nitrogen.
文摘优化氮肥施用和秸秆还田技术为途径的农业管理措施被认为是提升农业可持续性的有效手段,然而当前关于氮肥和秸秆还田对小麦产量和N_(2)O排放影响的研究仍十分有限。为此,本研究基于2000—2022年发表的关于长江中下游流域氮肥和秸秆投入下小麦产量和N_(2)O排放变化的文献,运用随机森林建模,定量分析氮肥和秸秆还田对小麦产量和N_(2)O排放的影响,并结合情景设置进行了特定地点的小麦产量和N_(2)O排放模拟,同时评估了碳排放强度(CEE)和净生态系统经济效益(NEEB)。结果表明,建立的区域尺度小麦产量与N_(2)O排放对氮秸互作响应的随机森林模型,验证结果R^(2)分别为0.66和0.65,RMSE分别为0.70和1.11。结果表明施氮量和土壤有机质是影响小麦产量和N_(2)O排放的重要因素。综合来看,达到最大产量所需的氮肥量为208~212 kg hm^(-2),达到最小CEE所需的氮肥量为113~130 kg hm^(-2),达到最高的NEEB所需的氮肥量为202~205 kg hm^(-2),其中在6.75 t hm^(-2)的秸秆投入下施用202 kg hm^(-2)的氮肥可以获得最高的生态收益1.37万元。优化氮肥和秸秆投入具备减少作物碳排放强度并获得最大净生态环境效益的潜力。
文摘Different ratios of NPK were adopted in this research to study its effects on the objective traits of 2 early forage-rice varieties, and to obtain the optimum ratio to further improve the application technique in theory. At the same time, the possibility of increasing yield and protein content in the grain through cultivation technique was also studied. The conclusions were: