期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High-entropy alloy catalysts:From bulk to nano toward highly efficient carbon and nitrogen catalysis 被引量:7
1
作者 Lanlan Yu Kaizhu Zeng +6 位作者 Chenghang Li Xiaorong Lin Hanwen Liu Wenhui Shi Hua-Jun Qiu Yifei Yuan Yonggang Yao 《Carbon Energy》 SCIE CAS 2022年第5期731-761,共31页
High-entropy alloys(HEAs)have attracted widespread attention as both structural and functional materials owing to their huge multielement composition space and unique high-entropy mixing structure.Recently,emerging HE... High-entropy alloys(HEAs)have attracted widespread attention as both structural and functional materials owing to their huge multielement composition space and unique high-entropy mixing structure.Recently,emerging HEAs,either in nano or highly porous bulk forms,are developed and utilized for various catalytic and clean energy applications with superior activity and remarkable durability.Being catalysts,HEAs possess some unique advantages,including(1)a multielement composition space for the discovery of new catalysts and fine-tuning of surface adsorption(i.e.,activity and selectivity),(2)diverse active sites derived from the random multielement mixing that are especially suitable for multistep catalysis,and(3)a high-entropy stabilized structure that improves the structural durability in harsh catalytic environments.Benefited from these inherent advantages,HEA catalysts have demonstrated superior catalytic performances and are promising for complex carbon(C)and nitrogen(N)cycle reactions featuring multistep reaction pathways and many different intermediates.However,the design,synthesis,characterization,and understanding of HEA catalysts for C-and N-involved reactions are extremely challenging because of both complex high-entropy materials and complex reactions.In this review,we present the recent development of HEA catalysts,particularly on their innovative and extensive syntheses,advanced(in situ)characterizations,and applications in complex C and N looping reactions,aiming to provide a focused view on how to utilize intrinsically complex catalysts for these important and complex reactions.In the end,remaining challenges and future directions are proposed to guide the development and application of HEA catalysts for highly efficient energy storage and chemical conversion toward carbon neutrality. 展开更多
关键词 carbon conversion ELECTROCATALYSIS high-entropy alloy catalysts multifunctionality nitrogen conversion
下载PDF
Effects of dietary fresh fermented soybean meal on growth performance, ammonia and particulate matter emissions, and nitrogen excretion in nursery piglets 被引量:17
2
作者 Sai-sai CHENG Yuan LI +3 位作者 Shi-jie GENG Luan-sha HU Xiong-feng FU Xin-yan HAN 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2017年第12期1083-1092,共10页
This study was conducted to investigate the effects of fresh fermented soybean meal(FSM) on the growth performance of nursery piglets, nitrogen excretion in feces, and the concentrations of ammonia(NH3) and partic... This study was conducted to investigate the effects of fresh fermented soybean meal(FSM) on the growth performance of nursery piglets, nitrogen excretion in feces, and the concentrations of ammonia(NH3) and particulate matter(PM) in the piggery. A total of 472 nursery piglets(Landrace×Yorkshire,(16.3±0.36) kg body weight) were randomly allocated into two treatments with 236 pigs in each treatment. The pigs were fed the basal diet without fresh FSM(control) or diet containing 10%(100 g/kg) fresh FSM(FSM group), and the crude protein content of the two groups was consistent. The feeding trial lasted for 28 d. The results showed that the pigs fed fresh FSM had increased(P〈0.05) average daily gain(ADG) compared with the control. There was no significant difference(P〈0.05) in feed to gain ratio(F:G) between the two groups. During the whole experiment, the concentration of NH3 in the piggery decreased(P〈0.05) by 19.0%, and the concentrations of PM(PM(10) and PM(2.5)) in the piggery decreased(P〈0.05) by 19.9% and 11.6%, respectively, in the FSM group, compared with the control. The ammonia nitrogen and nitrite content in feces increased(P〈0.05) by 32.9% and 28.4%, respectively, in the FSM group. The fecal p H declined(P〈0.05) significantly in the FSM group compared with the control. At the end of experiment, total protein(TP) concentration was increased(P〈0.05) significantly and blood urea nitrogen(BUN) concentration was decreased(P〈0.05) for pigs fed the diet with fresh FSM. The results indicated that dietary fresh FSM not only improved the growth performance of nursery piglets, but also reduced the NH3 concentration in the piggery due to nitrogen conversion, and decreased the concentrations of PM(10) and PM(2.5) in the piggery. 展开更多
关键词 Fresh fermented soybean meal AMMONIA Particulate matter nitrogen conversion Nursery piglet
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部