期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterization of the genes involved in nitrogen cycling in wastewater treatment plants using DNA microarray and most probable number-PCR
1
作者 Junqin PANG Masami MATSUDA +4 位作者 Masashi KURODA Daisuke INOUE Kazunari SEI Kei NISHIDA Michihiko IKE 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第4期61-70,共10页
To improve nitrogen removal performance of wastewater treatment plants (WWTPs), it is essential to understand the behavior of nitrogen cycling communities, which comprise various microorganisms. This study character... To improve nitrogen removal performance of wastewater treatment plants (WWTPs), it is essential to understand the behavior of nitrogen cycling communities, which comprise various microorganisms. This study characterized the quantity and diversity of nitrogen cycling genes in various processes of municipal WWTPs by employing two molecular-based methods:most probable number-polymerase chain reaction (MPN-PCR) and DNA microarray. MPN-PCR analysis revealed that gene quantities were not statistically different among processes, suggesting that conventional actwated sludge processes (CAS) are similar to nitrogen removal processes in their ability to retain an adequate population of nitrogen cycling microorganisms. Furthermore, most processes in the WWTPs that were researched shared a pattern:the nitS and the bacterial amoA genes were more abundant than the nirK and archaeal amoA genes, respectivelv. DNA microarray analysis revealed that several kinds of nitrification and denitrification genes were detected in both CAS and anaerobic-oxic processes (AO), whereas limited genes were detected in nitrogen removal processes. Results of this study suggest that CAS maintains a diverse community of nitrogen cycling microorganisms; moreover, the microbial communities in nitrogen removal processes may be specific. 展开更多
关键词 DNA microarray analysis nitrogen cycling functional genes Most probable number-polymerase chainreaction (MPN-PCR)Wastewater treatment plants (WWTPs)
原文传递
Characteristics of microbial community functional structure of a biological coking wastewater treatment system 被引量:7
2
作者 Dev Raj Joshi Yu Zhang +2 位作者 Hong Zhang Yingxin Gao Min Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第1期105-115,共11页
Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusi... Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array(Geo Chip 5.0)in combination with Illumina Hi Seq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run(500 days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, Geo Chip 5.0 detected almost all key functional gene(average61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2 diox; one ring2,3 diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina Hi Seq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes-nbz A(nitro-aromatics), tdn B(aniline), and scn ABC(thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, Hi Seq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants;hence it will be useful in optimization strategies for biological treatment of coking wastewater. 展开更多
关键词 Coking wastewater GeoChip Illumina HiSeq functional genes nitrogenous pollutants
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部