Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expre...Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.展开更多
In order to improve the total-dose radiation har dness of the buried oxides(BOX) in the structure of separation-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI),nitrogen ions are implanted into the buried oxides w...In order to improve the total-dose radiation har dness of the buried oxides(BOX) in the structure of separation-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI),nitrogen ions are implanted into the buried oxides with two different doses,2×10 15 and 3×10 15 cm -2 ,respectively.The experimental results show that the radiation hardness of the buried oxides is very sensitive to the doses of nitrogen implantation for a lower dose of irradiation with a Co-60 source.Despite the small difference between the doses of nitrogen implantation,the nitrogen-implanted 2×10 15 cm -2 BOX has a much higher hardness than the control sample (i.e.the buried oxide without receiving nitrogen implantation) for a total-dose irradiation of 5×104rad(Si),whereas the nitrogen-implanted 3×10 15 cm -2 BOX has a lower hardness than uhe control sample.However,this sensitivity of radiation hardness to the doses of nitrogen implantation reduces with the increasing total-dose of irradiation (from 5×104 to 5×105rad (Si)).The radiation hardness of BOX is characterized by MOS high-frequency (HF) capacitance-voltage (C-V) technique after the top silicon layers are removed.In addition,the abnormal HF C-V curve of the metal-silicon-BOX-silicon(MSOS) structure is observed and explained.展开更多
A series of meso‐microporous copper‐supporting chabazite molecular sieve(CuSAPO‐34) catalysts with excellent performance in low‐temperature ammonia selective catalytic reduction(NH3‐SCR)have been synthesized ...A series of meso‐microporous copper‐supporting chabazite molecular sieve(CuSAPO‐34) catalysts with excellent performance in low‐temperature ammonia selective catalytic reduction(NH3‐SCR)have been synthesized via a one‐pot hydrothermal crystallization method. The physicochemical properties of the catalysts were characterized by scanning electron microscopy, transmission electron microscopy, N2 adsorption‐desorption measurements, X‐ray diffraction, 27 Al magic angle spinning nuclear magnetic resonance, diffuse reflectance ultraviolet‐visible spectroscopy, inductively coupled plasma‐atomic emission spectroscopy, X‐ray photoelectron spectroscopy, temperature‐programmed reduction measurements, and electron paramagnetic resonance analysis. The formation of micro‐mesopores in the Cu‐SAPO‐34 catalysts decreases diffusion resistance and greatly improves the accessibility of reactants to catalytic active sites. The main active sites for NH3‐SCR reaction are the isolated Cu^2+ species displaced into the ellipsoidal cavity of the Cu‐SAPO‐34 catalysts.展开更多
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was...To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.展开更多
Dielectric barrier discharge (DBD) plasma was utilized to oxidize NO contained in the exhaust gas to NO2, ultimately improve the selective catalytic reduction of nitrogen oxides (NOx). In the one case, DBD was cre...Dielectric barrier discharge (DBD) plasma was utilized to oxidize NO contained in the exhaust gas to NO2, ultimately improve the selective catalytic reduction of nitrogen oxides (NOx). In the one case, DBD was created directly in the exhaust gas (direct application), and in the an other case, ozone produced by DBD was injected into the exhaust gas (indirect application). A comparative study between such direct and indirect applications of DBD plasma was made in terms of the NOx removal efficiency and the energy consumption. The NO2 content in the exhaust gas was changed by the voltage applied to the DBD device (for direct application) or by the amount of ozone added to the exhaust gas (for indirect application). In both cases, NO was easily oxidized to NO2, and the change in NO2 content largely affected the NOx removal performance of the catalytic reactor placed downstream, where both NO and NO2 were reduced to N2 in the presence of ammonia as the reducing agent. The experiments were primarily concerned with the effect of reaction temperature on the catalytic NOx reduction at various NO2 contents. The direct and indirect applications of DBD were found to remarkably improve the catalytic NOx reduction, especially at low temperatures.展开更多
A single-stage plasma-catalytic reactor in which catalytic materials werepacked was used to remove nitrogen oxides. The packing material was scoria being made of variousmetal oxides including Al_2O_3, MgO, TiO_2, etc....A single-stage plasma-catalytic reactor in which catalytic materials werepacked was used to remove nitrogen oxides. The packing material was scoria being made of variousmetal oxides including Al_2O_3, MgO, TiO_2, etc. Scoria was able to act not only as dielectricpellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia.Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 ℃to 200 ℃, showing less than 10% of NOx removal efficiency. When plasma is produced inside thereactor, the NOx removal efficiency could be increased to 60% in this temperature range.展开更多
Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The...Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The N doped material demonstrated enhanced electrocatalytic CO;reduction activity, showing high Faradaic efficiency(90%) for formate at -0.65 V vs. RHE with partial current density of 4 mA/cm;.The catalysis was contributed to increased electron negativity of N atom compared to O atom. Additionally, the N-doped catalyst demonstrates sulfur tolerance with retained formate selectivity. The analysis after electrolysis shows that the catalyst structure partially converts to metallic Sn, and thus the combined Sn/N-SnO;is the key for the active CO;catalysis.展开更多
The potential of using denitrifying and nitrifying concurrent biofilters for the removal of nitrogen oxides from synthetic gas streams was studied under the condition of high oxygen concentration. It was found that ...The potential of using denitrifying and nitrifying concurrent biofilters for the removal of nitrogen oxides from synthetic gas streams was studied under the condition of high oxygen concentration. It was found that more than 85% of nitric oxide was removed from synthetic combustion gas-streams which contained 20% oxygen and 350 μL/L NO, with a residence time of 60 seconds. In the process, it was found that the existing of oxygen showed no evident negative effect on the efficiency of nitrogen removal.展开更多
This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being...This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being reported for the first time. The exhaust is takenfrom a diesel engine of 6 kW under no load conditions. Thecharacteristic behavior of a pulse energized dielectric barrierdischarge reactor in the diesel exhaust treatment is reported. TheNOx removal was not significant (36/100) when the reactor without anypacking was used.展开更多
The application of nitrogen(N) fertilizer to increase crop yields has a significant influence on soil methane(CH_4) and nitrous oxide(N_2O) emission/uptake.A meta-analysis was carried out on the effect of N appl...The application of nitrogen(N) fertilizer to increase crop yields has a significant influence on soil methane(CH_4) and nitrous oxide(N_2O) emission/uptake.A meta-analysis was carried out on the effect of N application on(i) CH_4 emissions in rice paddies,(ii) CH_4 uptake in upland fields and(iii) N_2O emissions.The responses of CH_4 emissions to N application in rice paddies were highly variable and overall no effects were found.CH_4 emissions were stimulated at low N application rates(〈100 kg N ha^(-1)) but inhibited at high N rates(〉200 kg N ha^(-1)) as compared to no N fertilizer(control).The response of CH_4 uptake to N application in upland fields was 15%lower than control,with a mean CH_4 uptake factor of-0.001 kg CH_4-C kg^(-1) N.The mean N_2O emission factors were 1.00 and 0.94%for maize(Zea mays) and wheat(Triticum aestivum),respectively,but significantly lower for the rice(Oryza sativa)(0.51%).Compared with controls,N addition overall increased global warming potential of CH_4 and N_2O emissions by 78%.Our result revealed that response of CH_4 emission to N input might depend on the CH_4concentration in rice paddy.The critical factors that affected CH_4 uptake and N_2O emission were N fertilizer application rate and the controls of CH_4 uptake and N_2O emission.The influences of application times,cropping systems and measurement frequency should all be considered when assessing CH_4 and N_2O emissions/uptake induced by N fertilizer.展开更多
As a prominent contributor to air pollution,nitric oxide(NO)has emerged as a critical agent causing detrimental environmental and health ramifications.To mitigate emissions and facilitate downstream utilization,adsorp...As a prominent contributor to air pollution,nitric oxide(NO)has emerged as a critical agent causing detrimental environmental and health ramifications.To mitigate emissions and facilitate downstream utilization,adsorption-based techniques offer a compelling approach for direct NO capture from both stationary and mobile sources.In this study,a comprehensive exploration of NO capture under oxygen-lean and oxygenrich conditions was conducted,employing Ni ion-exchanged chabazite(CHA-type)zeolites as the adsorbents.Remarkably,Ni/Na-CHA zeolites,with Ni loadings ranging from 3 to 4 wt%,demonstrate remarkable dynamic uptake capacities and exhibit exceptional NO capture efficiencies(NO-to-Ni ratio)for both oxygen-lean(0.17-0.31 mmol/g,0.32-0.43 of NO/Ni)and oxygen-rich(1.64-1.18 mmol/g)under ambient conditions.An NH3 reduction methodology was designed for the regeneration of absorbents at a relatively low temperature of 673 K.Comprehensive insights into the NO_(x) adsorption mechanism were obtained through temperature-programmed desorption experiments,in situ Fourier transform infrared spectroscopy,and density functional theory calculations.It is unveiled that NO and NO_(2) exhibit propensity to coordinate with Ni^(2+) via N-terminal or O-terminal,yielding thermally stable complexes and metastable species,respectively,while the low-temperature desorption substances are generated in close proximity to Na^(+).This study not only offers micro-level perspectives but imparts crucial insights for the advancement of capture and reduction technologies utilizing precious-metal-free materials.展开更多
Over the last decades, nitric oxide(NO) has been definitively recognised as one of the key players involved in immunity and inflammation. NO generation was originally described in activated macrophages, which still re...Over the last decades, nitric oxide(NO) has been definitively recognised as one of the key players involved in immunity and inflammation. NO generation was originally described in activated macrophages, which still represent the prototype of NO-producing cells. Notwithstanding, additional cell subsets belonging to both innate and adaptive immunity have been documented to sustain NO propagation by means of the enzymatic activity of different nitric oxide synthase isoforms. Furthermore, due to its chemical characteristics, NO could rapidly react with other free radicals to generate different reactive nitrogen species(RNS), which have been intriguingly associated with many pathological conditions. Nonetheless, the plethora of NO/RNS-mediated effects still remains extremely puzzling. The aim of this manuscript is to dig into the broad literature on the topic to provide intriguing insights on NO-mediated circuits within immune system. We analysed NO and RNS immunological clues arising from their biochemical properties, immunomodulatory activities and finally dealing with their impact on different pathological scenarios with far prompting intriguing perspectives for their pharmacological targeting.展开更多
Nitrogen(N_(2))fixation at ambient condition by electrochemical N_(2)reduction reaction(NRR)is energy-efficient and eco-friendly as compared to the traditional Harber–Bosch process,but it is extremely challenging.Dev...Nitrogen(N_(2))fixation at ambient condition by electrochemical N_(2)reduction reaction(NRR)is energy-efficient and eco-friendly as compared to the traditional Harber–Bosch process,but it is extremely challenging.Development and design of high-performance NRR electrocatalysts are indispensable to achieve the goal.In this work,a strongly coupled hybrid of nano-Fe3O4 with reduced graphene oxide(rGO)is synthesized via an in situ redox hydrothermal approach,and the synthesized Fe_(3)O_(4)@r GO hybrid has excellent activity,selectivity,and stability as an NRR catalyst.The NH_(3) yield rate of 28.01μg h^(-1)mg^(-1)at-0.3 V and the Faradaic efficiency(FE)of 19.12%at-0.1 V are obtained in 0.1 M Na_(2)SO_(4) solutions at ambient conditions.The superior NRR performance is attributed to the chemical coupling effect between r GO and nano-Fe_(3)O_(4) particles,which leads to the enhancement of the binding affinity to N_(2) molecules,improvement of the conductivity,and lowering the free energy of reaction for the limiting reaction step.This work provides a facile route in fabricating hybrid NRR catalysts with superior performance and shed lights on the reaction mechanism with theoretical mechanistic calculations.展开更多
The gas-liquid phase equilibrium is used in controlling the nitrosation reaction process. Decomposition of nitrous acid and oxidation side reaction.are suppressed in a closed reaction system. The system pressure is us...The gas-liquid phase equilibrium is used in controlling the nitrosation reaction process. Decomposition of nitrous acid and oxidation side reaction.are suppressed in a closed reaction system. The system pressure is used as the criterion of the end of reaction, avoiding excessive feeding and reducing'the decomposition'of nitrous acid. The head space of the reactor is used as the gas buffer, stabilizing the feeding fluctuations and inhibiting the side reaction, decomposition of nitrous acid. Nitrogen oxide concentration is controlled at the minimum level.Thus the zero release ofnitrogen ox!de waste gas can be achieved without using any absorption process.展开更多
Nitrogen oxides(NO_2 and NO)are absorbed by tributyl phosphorate(TBP)to fom a new complex mixture of TBP-NO_x. which is used as a selective oddizing agent to oxidize benzylalcohols to corresponding sldehydes or ketone...Nitrogen oxides(NO_2 and NO)are absorbed by tributyl phosphorate(TBP)to fom a new complex mixture of TBP-NO_x. which is used as a selective oddizing agent to oxidize benzylalcohols to corresponding sldehydes or ketones In high yield. In the reaction process, nitrogen oxides are llberated mildly and mainly reduced to nitrogen, while tributyl phosphorate is recovered end recycled.展开更多
We evaluate nitrogen oxides pollution in Takamatsu and Utazu area in Kagawa prefecture, Japan. Annually observations for nitrogen oxides (nitrogen dioxide;NO2, nitric oxide;NO) (1990-2007) were obtained from data base...We evaluate nitrogen oxides pollution in Takamatsu and Utazu area in Kagawa prefecture, Japan. Annually observations for nitrogen oxides (nitrogen dioxide;NO2, nitric oxide;NO) (1990-2007) were obtained from data base of Kagawa prefecture, Japan. Changes in NO2 and NO in Takamatsu and Utazu area were evaluated and compared. In 2007, NO2, NO and NO2 + NO (ppm) in Takamatsu area were higher than those in Utazu area. However, NO2 /NO + NO2 in Takamatsu area was lower than that in Utazu area. From 1990 to 2007, mean of NO2 in a day over the level of 0.06 ppm was 30 days in Takamatsu area and only one day in Utazu area. Mean of NO2, NO and NO2 + NO was significantly higher and NO2/NO + NO2 was lower in Takamatsu area than that in Utazu area. In addition, NO2, NO and NO2 + NO were negatively correlated and NO2/NO + NO2 was positively correlated with years (1990-2007) in Takamatsu area. The level of nitrogen oxides pollution in Utazu area was lower than Takamatsu area. Further observation is required for preventing nitrogen oxides pollution in Kagawa prefecture, Japan.展开更多
Stored peanuts often need treatments to control microbial infections as well as insects to maintain postharvest quality. Nitric oxide (NO) is a recently discovered fumigant for postharvest pest control. NO fumigation ...Stored peanuts often need treatments to control microbial infections as well as insects to maintain postharvest quality. Nitric oxide (NO) is a recently discovered fumigant for postharvest pest control. NO fumigation must be conducted under ultralow oxygen condition to preserve NO and always contains NO<sub>2</sub> due to NO reaction with oxygen and NO<sub>2</sub> has antimicrobial property. Therefore, NO fumigation has potential to control both pests and pathogens. In this study, we evaluated antimicrobial effects of NO<sub>2</sub> fumigation on unpasteurized unshelled peanuts. Peanuts were fumigated with 0.3%, 1.0%, and 3.0% NO<sub>2</sub> for three days at 25<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">˚</span></span></span>C by injecting NO gas into glass jars to react with O<sub>2</sub> in the atmosphere. After fumigation, wash-off microbial samples were collected from intact peanut samples and, then, cracked open peanut samples with non-selective tryptic soy broth medium. The wash-off samples were then diluted with both the non-selective medium and a fungal-selective potato dextrose broth medium and were tested on GreenLight<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">™</span></span></sup></span> rapid enumeration test based on oxygen depletion on culture medium. All three NO<sub>2</sub> fumigation treatments showed significant antibacterial and antifungal effects on intact peanuts as well as on cracked peanuts with complete inhibition with 3.0% NO<sub>2</sub>. Fumigation did not have obvious effects on appearance of skinned peanut kernels. These results suggested that NO<sub>2</sub> fumigation has potential to control microbes on stored products, and NO fumigation with the combination of NO and NO<sub>2</sub> has potential to control both insects and microbes on stored products.展开更多
To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal co...To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal component analysis(PCA)was proposed and applied to the prediction of nitrogen oxide(NO_(x))concentration at the outlet of a selective catalytic reduction(SCR)denitrification system.First,PCA is applied to the feature information extraction of input data,and the current and previous sequence values of the extracted information are used as the inputs of the KELM model to reflect the dynamic characteristics of the NO_(x)concentration at the SCR outlet.Then,the model takes the historical data of the NO_(x)concentration at the SCR outlet as the model input to improve its accuracy.Finally,an optimization algorithm is used to determine the optimal parameters of the model.Compared with the Gaussian process regression,long short-term memory,and convolutional neural network models,the prediction errors are reduced by approximately 78.4%,67.6%,and 59.3%,respectively.The results indicate that the proposed dynamic model structure is reliable and can accurately predict NO_(x)concentrations at the outlet of the SCR system.展开更多
Rational design of low-cost, highly electrocatalytic activity, and stable bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) has been a great significant for metal–air...Rational design of low-cost, highly electrocatalytic activity, and stable bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) has been a great significant for metal–air batteries. Herein, an efficient bifunctional electrocatalyst based on hollow cobalt oxide nanoparticles embedded in nitrogen-doped carbon nanosheets(Co/N-Pg) is fabricated for Zn–air batteries. A lowcost biomass peach gum, consisting of carbon, oxygen, and hydrogen without other heteroatoms, was used as carbon source to form carbon matrix hosting hollow cobalt oxide nanoparticles. Meanwhile, the melamine was applied as nitrogen source and template precursor, which can convert to carbon-based template graphitic carbon nitride by polycondensation process. Owing to the unique structure and synergistic effect between hollow cobalt oxide nanoparticles and Co-N-C species, the proposal Co/N-Pg catalyst displays not only prominent bifunctional electrocatalytic activities for ORR and OER, but also excellent durability. Remarkably, the assembled Zn–air battery with Co/N-Pg air electrode exhibited a low discharge-charge voltage gap(0.81 V at 50 mA cm^-2) and high peak power density(119 mW cm^-2) with long-term cycling stability. This work presents an effective approach for engineering transition metal oxides and nitrogen modified carbon nanosheets to boost the performance of bifunctional electrocatalysts for Zn–air battery.展开更多
Storage-reduction of NOx by carbon monoxide was investigated over combined catalysts of Mn/Ba/Al2O3-Pt/Ba/Al2O3. Combination of Mn/Ba/Al2O3 and Pt/Ba/Al2O3 catalysts in different ways showed excellent NOx storage-redu...Storage-reduction of NOx by carbon monoxide was investigated over combined catalysts of Mn/Ba/Al2O3-Pt/Ba/Al2O3. Combination of Mn/Ba/Al2O3 and Pt/Ba/Al2O3 catalysts in different ways showed excellent NOx storage-reduction performance and the content of Pt could be reduced by 50%. Not only the addition of 5Mn/15Ba/Al2O3 to 1Pt/15Ba/Al2O3 could improve its storage ability, but also enhance the NOx conversion consequently. NOx conversion over the combined catalysts (the combined catalysts Ⅰ and Ⅱ) was increased under dynamic lean-rich burn conditions, the maximum NOx conversion increased from 69.4% to respectively 78.8% and 75.7% over two combined catalysts.展开更多
文摘Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.
文摘In order to improve the total-dose radiation har dness of the buried oxides(BOX) in the structure of separation-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI),nitrogen ions are implanted into the buried oxides with two different doses,2×10 15 and 3×10 15 cm -2 ,respectively.The experimental results show that the radiation hardness of the buried oxides is very sensitive to the doses of nitrogen implantation for a lower dose of irradiation with a Co-60 source.Despite the small difference between the doses of nitrogen implantation,the nitrogen-implanted 2×10 15 cm -2 BOX has a much higher hardness than the control sample (i.e.the buried oxide without receiving nitrogen implantation) for a total-dose irradiation of 5×104rad(Si),whereas the nitrogen-implanted 3×10 15 cm -2 BOX has a lower hardness than uhe control sample.However,this sensitivity of radiation hardness to the doses of nitrogen implantation reduces with the increasing total-dose of irradiation (from 5×104 to 5×105rad (Si)).The radiation hardness of BOX is characterized by MOS high-frequency (HF) capacitance-voltage (C-V) technique after the top silicon layers are removed.In addition,the abnormal HF C-V curve of the metal-silicon-BOX-silicon(MSOS) structure is observed and explained.
基金supported by the National Natural Science Foundation of China(2137626121173270)+4 种基金the National High Technology Research and Development Program of China(863 Program2015AA034603)the Beijing Natural Science Foundation(2142027)the China University of Petroleum Fund(201300071100072462015QZDX04)~~
文摘A series of meso‐microporous copper‐supporting chabazite molecular sieve(CuSAPO‐34) catalysts with excellent performance in low‐temperature ammonia selective catalytic reduction(NH3‐SCR)have been synthesized via a one‐pot hydrothermal crystallization method. The physicochemical properties of the catalysts were characterized by scanning electron microscopy, transmission electron microscopy, N2 adsorption‐desorption measurements, X‐ray diffraction, 27 Al magic angle spinning nuclear magnetic resonance, diffuse reflectance ultraviolet‐visible spectroscopy, inductively coupled plasma‐atomic emission spectroscopy, X‐ray photoelectron spectroscopy, temperature‐programmed reduction measurements, and electron paramagnetic resonance analysis. The formation of micro‐mesopores in the Cu‐SAPO‐34 catalysts decreases diffusion resistance and greatly improves the accessibility of reactants to catalytic active sites. The main active sites for NH3‐SCR reaction are the isolated Cu^2+ species displaced into the ellipsoidal cavity of the Cu‐SAPO‐34 catalysts.
文摘To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.
文摘Dielectric barrier discharge (DBD) plasma was utilized to oxidize NO contained in the exhaust gas to NO2, ultimately improve the selective catalytic reduction of nitrogen oxides (NOx). In the one case, DBD was created directly in the exhaust gas (direct application), and in the an other case, ozone produced by DBD was injected into the exhaust gas (indirect application). A comparative study between such direct and indirect applications of DBD plasma was made in terms of the NOx removal efficiency and the energy consumption. The NO2 content in the exhaust gas was changed by the voltage applied to the DBD device (for direct application) or by the amount of ozone added to the exhaust gas (for indirect application). In both cases, NO was easily oxidized to NO2, and the change in NO2 content largely affected the NOx removal performance of the catalytic reactor placed downstream, where both NO and NO2 were reduced to N2 in the presence of ammonia as the reducing agent. The experiments were primarily concerned with the effect of reaction temperature on the catalytic NOx reduction at various NO2 contents. The direct and indirect applications of DBD were found to remarkably improve the catalytic NOx reduction, especially at low temperatures.
基金The project supported by the Basic Research Program of the Korea Science & Engineering Foundation (KOSEF) (No. R05-2001-000-01247-0)
文摘A single-stage plasma-catalytic reactor in which catalytic materials werepacked was used to remove nitrogen oxides. The packing material was scoria being made of variousmetal oxides including Al_2O_3, MgO, TiO_2, etc. Scoria was able to act not only as dielectricpellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia.Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 ℃to 200 ℃, showing less than 10% of NOx removal efficiency. When plasma is produced inside thereactor, the NOx removal efficiency could be increased to 60% in this temperature range.
基金financially supported by Key Research Program of the Chinese Academy of Sciences (ZDRW-ZS-2016-3)the National Key Research and Development Program of China (2016YFB0600901)the Instrument Developing Project of the Chinese Academy of Sciences
文摘Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The N doped material demonstrated enhanced electrocatalytic CO;reduction activity, showing high Faradaic efficiency(90%) for formate at -0.65 V vs. RHE with partial current density of 4 mA/cm;.The catalysis was contributed to increased electron negativity of N atom compared to O atom. Additionally, the N-doped catalyst demonstrates sulfur tolerance with retained formate selectivity. The analysis after electrolysis shows that the catalyst structure partially converts to metallic Sn, and thus the combined Sn/N-SnO;is the key for the active CO;catalysis.
基金supported by the National Natural Science Foundation of China(Grants No.20277009)
文摘The potential of using denitrifying and nitrifying concurrent biofilters for the removal of nitrogen oxides from synthetic gas streams was studied under the condition of high oxygen concentration. It was found that more than 85% of nitric oxide was removed from synthetic combustion gas-streams which contained 20% oxygen and 350 μL/L NO, with a residence time of 60 seconds. In the process, it was found that the existing of oxygen showed no evident negative effect on the efficiency of nitrogen removal.
文摘This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being reported for the first time. The exhaust is takenfrom a diesel engine of 6 kW under no load conditions. Thecharacteristic behavior of a pulse energized dielectric barrierdischarge reactor in the diesel exhaust treatment is reported. TheNOx removal was not significant (36/100) when the reactor without anypacking was used.
基金financed by the Chinese Academy of Sciences for Strategic Priority Research Program(XDA05050602)the Key Technologies R&D Program of China during the 12th Five-Year Plan period of China(2012BAD14B01-1)
文摘The application of nitrogen(N) fertilizer to increase crop yields has a significant influence on soil methane(CH_4) and nitrous oxide(N_2O) emission/uptake.A meta-analysis was carried out on the effect of N application on(i) CH_4 emissions in rice paddies,(ii) CH_4 uptake in upland fields and(iii) N_2O emissions.The responses of CH_4 emissions to N application in rice paddies were highly variable and overall no effects were found.CH_4 emissions were stimulated at low N application rates(〈100 kg N ha^(-1)) but inhibited at high N rates(〉200 kg N ha^(-1)) as compared to no N fertilizer(control).The response of CH_4 uptake to N application in upland fields was 15%lower than control,with a mean CH_4 uptake factor of-0.001 kg CH_4-C kg^(-1) N.The mean N_2O emission factors were 1.00 and 0.94%for maize(Zea mays) and wheat(Triticum aestivum),respectively,but significantly lower for the rice(Oryza sativa)(0.51%).Compared with controls,N addition overall increased global warming potential of CH_4 and N_2O emissions by 78%.Our result revealed that response of CH_4 emission to N input might depend on the CH_4concentration in rice paddy.The critical factors that affected CH_4 uptake and N_2O emission were N fertilizer application rate and the controls of CH_4 uptake and N_2O emission.The influences of application times,cropping systems and measurement frequency should all be considered when assessing CH_4 and N_2O emissions/uptake induced by N fertilizer.
基金supported by the National Natural Science Foundation of China(22302100,22025203,22121005)the Fundamental Research Funds for the Central Universities(Nankai University).
文摘As a prominent contributor to air pollution,nitric oxide(NO)has emerged as a critical agent causing detrimental environmental and health ramifications.To mitigate emissions and facilitate downstream utilization,adsorption-based techniques offer a compelling approach for direct NO capture from both stationary and mobile sources.In this study,a comprehensive exploration of NO capture under oxygen-lean and oxygenrich conditions was conducted,employing Ni ion-exchanged chabazite(CHA-type)zeolites as the adsorbents.Remarkably,Ni/Na-CHA zeolites,with Ni loadings ranging from 3 to 4 wt%,demonstrate remarkable dynamic uptake capacities and exhibit exceptional NO capture efficiencies(NO-to-Ni ratio)for both oxygen-lean(0.17-0.31 mmol/g,0.32-0.43 of NO/Ni)and oxygen-rich(1.64-1.18 mmol/g)under ambient conditions.An NH3 reduction methodology was designed for the regeneration of absorbents at a relatively low temperature of 673 K.Comprehensive insights into the NO_(x) adsorption mechanism were obtained through temperature-programmed desorption experiments,in situ Fourier transform infrared spectroscopy,and density functional theory calculations.It is unveiled that NO and NO_(2) exhibit propensity to coordinate with Ni^(2+) via N-terminal or O-terminal,yielding thermally stable complexes and metastable species,respectively,while the low-temperature desorption substances are generated in close proximity to Na^(+).This study not only offers micro-level perspectives but imparts crucial insights for the advancement of capture and reduction technologies utilizing precious-metal-free materials.
基金Supported by Grant from the Italian Ministry of Health,BANDO GIOVANI RICERCATORI,No.2009-GR-2009-1558698Agnellini AHR was granted by Cariparo Fundation Fellowship
文摘Over the last decades, nitric oxide(NO) has been definitively recognised as one of the key players involved in immunity and inflammation. NO generation was originally described in activated macrophages, which still represent the prototype of NO-producing cells. Notwithstanding, additional cell subsets belonging to both innate and adaptive immunity have been documented to sustain NO propagation by means of the enzymatic activity of different nitric oxide synthase isoforms. Furthermore, due to its chemical characteristics, NO could rapidly react with other free radicals to generate different reactive nitrogen species(RNS), which have been intriguingly associated with many pathological conditions. Nonetheless, the plethora of NO/RNS-mediated effects still remains extremely puzzling. The aim of this manuscript is to dig into the broad literature on the topic to provide intriguing insights on NO-mediated circuits within immune system. We analysed NO and RNS immunological clues arising from their biochemical properties, immunomodulatory activities and finally dealing with their impact on different pathological scenarios with far prompting intriguing perspectives for their pharmacological targeting.
基金Sichuan Science and Technology Program(2018GZ0459)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003)the Fundamental Research Funds for the Central Universities(WUT:2020Ⅲ029)
文摘Nitrogen(N_(2))fixation at ambient condition by electrochemical N_(2)reduction reaction(NRR)is energy-efficient and eco-friendly as compared to the traditional Harber–Bosch process,but it is extremely challenging.Development and design of high-performance NRR electrocatalysts are indispensable to achieve the goal.In this work,a strongly coupled hybrid of nano-Fe3O4 with reduced graphene oxide(rGO)is synthesized via an in situ redox hydrothermal approach,and the synthesized Fe_(3)O_(4)@r GO hybrid has excellent activity,selectivity,and stability as an NRR catalyst.The NH_(3) yield rate of 28.01μg h^(-1)mg^(-1)at-0.3 V and the Faradaic efficiency(FE)of 19.12%at-0.1 V are obtained in 0.1 M Na_(2)SO_(4) solutions at ambient conditions.The superior NRR performance is attributed to the chemical coupling effect between r GO and nano-Fe_(3)O_(4) particles,which leads to the enhancement of the binding affinity to N_(2) molecules,improvement of the conductivity,and lowering the free energy of reaction for the limiting reaction step.This work provides a facile route in fabricating hybrid NRR catalysts with superior performance and shed lights on the reaction mechanism with theoretical mechanistic calculations.
文摘The gas-liquid phase equilibrium is used in controlling the nitrosation reaction process. Decomposition of nitrous acid and oxidation side reaction.are suppressed in a closed reaction system. The system pressure is used as the criterion of the end of reaction, avoiding excessive feeding and reducing'the decomposition'of nitrous acid. The head space of the reactor is used as the gas buffer, stabilizing the feeding fluctuations and inhibiting the side reaction, decomposition of nitrous acid. Nitrogen oxide concentration is controlled at the minimum level.Thus the zero release ofnitrogen ox!de waste gas can be achieved without using any absorption process.
文摘Nitrogen oxides(NO_2 and NO)are absorbed by tributyl phosphorate(TBP)to fom a new complex mixture of TBP-NO_x. which is used as a selective oddizing agent to oxidize benzylalcohols to corresponding sldehydes or ketones In high yield. In the reaction process, nitrogen oxides are llberated mildly and mainly reduced to nitrogen, while tributyl phosphorate is recovered end recycled.
文摘We evaluate nitrogen oxides pollution in Takamatsu and Utazu area in Kagawa prefecture, Japan. Annually observations for nitrogen oxides (nitrogen dioxide;NO2, nitric oxide;NO) (1990-2007) were obtained from data base of Kagawa prefecture, Japan. Changes in NO2 and NO in Takamatsu and Utazu area were evaluated and compared. In 2007, NO2, NO and NO2 + NO (ppm) in Takamatsu area were higher than those in Utazu area. However, NO2 /NO + NO2 in Takamatsu area was lower than that in Utazu area. From 1990 to 2007, mean of NO2 in a day over the level of 0.06 ppm was 30 days in Takamatsu area and only one day in Utazu area. Mean of NO2, NO and NO2 + NO was significantly higher and NO2/NO + NO2 was lower in Takamatsu area than that in Utazu area. In addition, NO2, NO and NO2 + NO were negatively correlated and NO2/NO + NO2 was positively correlated with years (1990-2007) in Takamatsu area. The level of nitrogen oxides pollution in Utazu area was lower than Takamatsu area. Further observation is required for preventing nitrogen oxides pollution in Kagawa prefecture, Japan.
文摘Stored peanuts often need treatments to control microbial infections as well as insects to maintain postharvest quality. Nitric oxide (NO) is a recently discovered fumigant for postharvest pest control. NO fumigation must be conducted under ultralow oxygen condition to preserve NO and always contains NO<sub>2</sub> due to NO reaction with oxygen and NO<sub>2</sub> has antimicrobial property. Therefore, NO fumigation has potential to control both pests and pathogens. In this study, we evaluated antimicrobial effects of NO<sub>2</sub> fumigation on unpasteurized unshelled peanuts. Peanuts were fumigated with 0.3%, 1.0%, and 3.0% NO<sub>2</sub> for three days at 25<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">˚</span></span></span>C by injecting NO gas into glass jars to react with O<sub>2</sub> in the atmosphere. After fumigation, wash-off microbial samples were collected from intact peanut samples and, then, cracked open peanut samples with non-selective tryptic soy broth medium. The wash-off samples were then diluted with both the non-selective medium and a fungal-selective potato dextrose broth medium and were tested on GreenLight<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">™</span></span></sup></span> rapid enumeration test based on oxygen depletion on culture medium. All three NO<sub>2</sub> fumigation treatments showed significant antibacterial and antifungal effects on intact peanuts as well as on cracked peanuts with complete inhibition with 3.0% NO<sub>2</sub>. Fumigation did not have obvious effects on appearance of skinned peanut kernels. These results suggested that NO<sub>2</sub> fumigation has potential to control microbes on stored products, and NO fumigation with the combination of NO and NO<sub>2</sub> has potential to control both insects and microbes on stored products.
基金The National Natural Science Foundation of China(No.71471060)the Natural Science Foundation of Hebei Province(No.E2018502111)。
文摘To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal component analysis(PCA)was proposed and applied to the prediction of nitrogen oxide(NO_(x))concentration at the outlet of a selective catalytic reduction(SCR)denitrification system.First,PCA is applied to the feature information extraction of input data,and the current and previous sequence values of the extracted information are used as the inputs of the KELM model to reflect the dynamic characteristics of the NO_(x)concentration at the SCR outlet.Then,the model takes the historical data of the NO_(x)concentration at the SCR outlet as the model input to improve its accuracy.Finally,an optimization algorithm is used to determine the optimal parameters of the model.Compared with the Gaussian process regression,long short-term memory,and convolutional neural network models,the prediction errors are reduced by approximately 78.4%,67.6%,and 59.3%,respectively.The results indicate that the proposed dynamic model structure is reliable and can accurately predict NO_(x)concentrations at the outlet of the SCR system.
基金financially supported by the National Natural Science Foundation of China (Nos. 21506081, 21705058, 21676126)the Provincial Natural Science Foundation of Jiangsu (Nos. BK20170524, BK20160492)+2 种基金China Postdoctoral Science Foundation (No. 2018T110450)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsThe financial support from an ARC Discovery Project (No. DP180102003)
文摘Rational design of low-cost, highly electrocatalytic activity, and stable bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) has been a great significant for metal–air batteries. Herein, an efficient bifunctional electrocatalyst based on hollow cobalt oxide nanoparticles embedded in nitrogen-doped carbon nanosheets(Co/N-Pg) is fabricated for Zn–air batteries. A lowcost biomass peach gum, consisting of carbon, oxygen, and hydrogen without other heteroatoms, was used as carbon source to form carbon matrix hosting hollow cobalt oxide nanoparticles. Meanwhile, the melamine was applied as nitrogen source and template precursor, which can convert to carbon-based template graphitic carbon nitride by polycondensation process. Owing to the unique structure and synergistic effect between hollow cobalt oxide nanoparticles and Co-N-C species, the proposal Co/N-Pg catalyst displays not only prominent bifunctional electrocatalytic activities for ORR and OER, but also excellent durability. Remarkably, the assembled Zn–air battery with Co/N-Pg air electrode exhibited a low discharge-charge voltage gap(0.81 V at 50 mA cm^-2) and high peak power density(119 mW cm^-2) with long-term cycling stability. This work presents an effective approach for engineering transition metal oxides and nitrogen modified carbon nanosheets to boost the performance of bifunctional electrocatalysts for Zn–air battery.
基金The National Natural Science Foundation of China(Grant No.20476032)the Natural Science Foundation of Guangdong Province(Grant No.06025654)are gratefully acknowledged for financial supports of this project.
文摘Storage-reduction of NOx by carbon monoxide was investigated over combined catalysts of Mn/Ba/Al2O3-Pt/Ba/Al2O3. Combination of Mn/Ba/Al2O3 and Pt/Ba/Al2O3 catalysts in different ways showed excellent NOx storage-reduction performance and the content of Pt could be reduced by 50%. Not only the addition of 5Mn/15Ba/Al2O3 to 1Pt/15Ba/Al2O3 could improve its storage ability, but also enhance the NOx conversion consequently. NOx conversion over the combined catalysts (the combined catalysts Ⅰ and Ⅱ) was increased under dynamic lean-rich burn conditions, the maximum NOx conversion increased from 69.4% to respectively 78.8% and 75.7% over two combined catalysts.