期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Brassinosteroids modulate nitrogen physiological response and promote nitrogen uptake in maize(Zea mays L.) 被引量:1
1
作者 Jiapeng Xing Yubin Wang +3 位作者 Qingqing Yao Yushi Zhang Mingcai Zhang Zhaohu Li 《The Crop Journal》 SCIE CSCD 2022年第1期166-176,共11页
Brassinosteroids(BRs)are steroid hormones that function in plant growth and development and response to environmental stresses and nutrient supplies.However,few studies have investigated the effect of BRs in modulatin... Brassinosteroids(BRs)are steroid hormones that function in plant growth and development and response to environmental stresses and nutrient supplies.However,few studies have investigated the effect of BRs in modulating the physiological response to nitrogen(N)supply in maize.In the present study,BR signalingdeficient mutant zmbri1-RNAi lines and exogenous application of 2,4-epibrassinolide(e BL)were used to study the role of BRs in the regulation of physiological response in maize seedlings supplied with N.Exogenous application of e BL increased primary root length and plant biomass,but zmbri1 plants showed shorter primary roots and less plant biomass than wild-type plants under low N(LN)and normal N(NN)conditions.LN induced the expression of the BR signaling-associated genes Zm DWF4,Zm CPD,Zm DET2,and Zm BZR1 and the production of longer primary roots than NN.Knockdown of Zm BRI1 weakened the biological effects of LN-induced primary root elongation.e BL treatment increased N accumulation in shoots and roots of maize seedlings exposed to LN or NN treatment.Correspondingly,zmbri1 plants showed lower N accumulation in shoots and roots than wild-type plants.Along with reduced N accumulation,zmbri1 plants showed lower NO3-fluxes and^(15)NO_(3)^(-)uptake.The expression of nitrate transporter(NRT)genes(Zm NPF6.4,Zm NPF6.6,Zm NRT2.1,Zm NRT2.2)was lower in zmbri1 than in wild-type roots,but e BL treatments up-regulated the transcript expression of NRT genes.Thus,BRs modulated N physiological response and regulated the transcript expression of NRT genes to promote N uptake in maize. 展开更多
关键词 BRASSINOSTEROIDS nitrogen uptake Nitrate transporter gene Root architecture MAIZE
下载PDF
Effects of phytoplankton community and interaction between environmental variables on nitrogen uptake and transformations in an urban river
2
作者 Jing YANG Haiguang PEI +5 位作者 Junping LÜ Qi LIU Fangru NAN Xudong LIU Shulian XIE Jia FENG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第3期1012-1026,共15页
Phytoplankton are not only the main bearer of the nitrogen cycle,but also a key link driving nitrogen cycle.However,most phytoplankton cannot directly use N_(2),and they must uptake nitrogenous nutrients(ammonium,nitr... Phytoplankton are not only the main bearer of the nitrogen cycle,but also a key link driving nitrogen cycle.However,most phytoplankton cannot directly use N_(2),and they must uptake nitrogenous nutrients(ammonium,nitrate,and urea)to meet their photosynthesis needs.We examined the uptake characteristics of several nitrogenous substrates using stable isotope technique and identifi ed the potential nitrogen transformations in the Fenhe River.Results revealed that spring phytoplankton community composed of mainly Fragilaria,Ulothrix,Microcystis,and Synedra.Urea can meet the spring partial nitrogen requirement of phytoplankton.The large uptake rate of urea depended on urease,chlorophyll a,and nitrate concentrations as shown in random forest models.Cyanobacteria explained more than 42.8%of the total abundance at all sites in summer.Upstream was dominated by Actinastrum,and Chlorella was relevant in the downstream section.The uptake rates of ammonium were higher than those of nitrate and urea.In addition,the random forest model demonstrated that ammonium,urease,and dissolved oxygen(DO)were the major contributors to the ammonium uptake rates.Ammonium was taken up preferentially in autumn and phytoplankton(Cyclotella,Chlorella,and Pseudanabaena)appeared to be able to respond to changes in nitrogen forms by adjusting their community composition.Structural equation models demonstrated that temperature-induced changes in DO directly affected the transformations of different forms of nitrogen.At the same time,dissolved organic carbon can directly act on nutrients and then indirectly affect enzyme activity.There were great diff erences in the positive and negative effects of different paths in the process of nitrate reduction to nitrite and then reduction to ammonium in time and space.These findings provide a better understanding of the underlying mechanism of nitrogen uptake and the influences of interaction between environmental variables on nitrogen transformations in urban river ecosystems. 展开更多
关键词 PHYTOPLANKTON environmental variables nitrogen uptake TRANSFORMATION urban river
下载PDF
Tiller fertility is critical for improving grain yield,photosynthesis,and nitrogen efficiency in wheat 被引量:1
3
作者 DING Yong-gang ZHANG Xin-bo +7 位作者 MA Quan LI Fu-jian TAO Rong-rong ZHU Min LI Chun-yan ZHU Xin-kai GUO Wen-shan DING Jin-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第7期2054-2066,共13页
Genetic improvement has promoted wheat’s grain yield and nitrogen use efficiency(NUE)during the past decades.Therefore,the current wheat cultivars exhibit higher grain yield and NUE than previous cultivars in the Yan... Genetic improvement has promoted wheat’s grain yield and nitrogen use efficiency(NUE)during the past decades.Therefore,the current wheat cultivars exhibit higher grain yield and NUE than previous cultivars in the Yangtze River Basin,China since the 2000s.However,the critical traits and mechanisms of the increased grain yield and NUE remain unknown.This study explores the mechanisms underlying these new cultivars’increased grain yield and NUE by studying 21 local cultivars cultivated for three growing seasons from 2016 to 2019.Significantly positive correlations were observed between grain yield and NUE in the three years.The cultivars were grouped into high(HH),medium(MM),and low(LL)grain yield and NUE groups.The HH group exhibited significantly high grain yield and NUE.High grain yield was attributed to more effective ears by high tiller fertility and greater single-spike yield by increasing post-anthesis single-stem biomass.Compared to other groups,the HH group demonstrated a longer leaf stay-green ability and a greater flag leaf photosynthetic rate after anthesis.It also showed higher N accumulation at pre-anthesis,which contributed to increasing N accumulation per stem,including stem and leaf sheath,leaf blade,and unit leaf area at pre-anthesis,and promoting N uptake efficiency,the main contribution of high NUE.Moreover,tiller fertility was positively related to N accumulation per stem,N accumulation per unit leaf area,leaf stay-green ability,and flag leaf photosynthetic rate,which indicates that improving tiller fertility promoted N uptake,leaf N accumulation,and photosynthetic ability,thereby achieving synchronous improvements in grain yield and NUE.Therefore,tiller fertility is proposed as an important kernel indicator that can be used in the breeding and management of cultivars to improve agricultural efficiency and sustainability. 展开更多
关键词 grain yield NUE tiller fertility PHOTOSYNTHESIS nitrogen uptake
下载PDF
Apparent variations in nitrogen runoff and its uptake in paddy rice under straw incorporation
4
作者 Muhammad Amjad BASHIR ZHAI Li-mei +5 位作者 WANG Hong-yuan LIU Jian Qurat-Ul-Ain RAZA GENG Yu-cong Abdur REHIM LIU Hong-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第11期3356-3367,共12页
Straw incorporation is a widespread practice to promote agricultural sustainability.However,the potential effects of straw incorporation with the prolonged time on nitrogen(N)runoff loss from paddy fields are not well... Straw incorporation is a widespread practice to promote agricultural sustainability.However,the potential effects of straw incorporation with the prolonged time on nitrogen(N)runoff loss from paddy fields are not well studied.The current study addresses the knowledge gap by assessing the effects of straw incorporation on the processes influencing N runoff patterns and its impacts on crop yield,N uptake,total N(TN),and soil organic matter(SOM).We conducted field experiments with rice(Oryza sativa L.)–wheat(Triticum aestivum L.)rotation,rice–tobacco(Nicotiana tabacum L.)rotation,and double-rice cropping in subtropical China from 2008 to 2012.Each rotation had three N treatments:zero N fertilization(CK),chemical N fertilization(CF),and chemical N fertilization combined with straw incorporation(CFS).The treatment effects were assessed on TN runoff loss,crop yield,N uptake,soil TN stock,and SOM.Results showed that TN runoff was reduced by substituting part of the chemical N fertilizer with straw N in the double rice rotation,while crop N uptake was significantly(P<0.05)decreased due to the lower bioavailability of straw N.In contrast,in both rice–wheat and rice–tobacco rotations,TN runoff in CFS was increased by 0.9–20.2%in the short term when straw N was applied in addition to chemical N,compared to CF.However,TN runoff was reduced by 2.3–19.3%after three years of straw incorporation,suggesting the long-term benefits of straw incorporation on TN loss reduction.Meanwhile,crop N uptake was increased by 0.8–37.3%in the CFS of both rotations.This study demonstrates the challenges in reducing N runoff loss while improving soil fertility by straw incorporation over the short term but highlights the potential of long-term straw incorporation to reduce N loss and improve soil productivity. 展开更多
关键词 straw return nitrogen runoff water pollution rice yield nitrogen uptake
下载PDF
Nitrogen uptake strategies of mature conifers in Northeastern China, illustrated by the ^(15)N natural abundance method
5
作者 Xulun Zhou Ang Wang +4 位作者 Erik A.Hobbie Feifei Zhu Xueyan Wang Yinghua Li Yunting Fang 《Ecological Processes》 SCIE EI 2021年第1期470-480,共11页
Background:Conifers partition different N forms from soil,including ammonium,nitrate,and dissolved organic N(DON),to sustain plant growth.Previous studies focused on inorganic N sources and specific amino acid forms u... Background:Conifers partition different N forms from soil,including ammonium,nitrate,and dissolved organic N(DON),to sustain plant growth.Previous studies focused on inorganic N sources and specific amino acid forms using ^(15)N labelling,but knowledge of the contribution of DON to mature conifers’N uptake is still scarce.Here,we quantified the contribution of different N forms(DON vs.NH_(4)^(+)vs.NO_(3)^(−))to total N uptake,based on ^(15)N natural abundance of plant and soil available N,in four mature conifers(Pinus koraiensis,Pinus sylvestris,Picea koraiensis,and Larix olgensis).Results:DON contributed 31%,29%,28%,and 24%to total N uptake by Larix olgensis,Picea koraiensis,Pinus koraiensis,and Pinus sylvestris,respectively,whereas nitrate contributed 42 to 52%and ammonium contributed 19 to 29%of total N uptake for these four coniferous species.Conclusions:Our results suggested that all four conifers could take up a relatively large proportion of nitrate,while DON was also an important N source for the four conifers.Given that DON was the dominant N form in study soil,such uptake pattern of conifers could be an adaptive strategy for plants to compete for the limited available N sources from soil so as to promote conifer growth and maintain species coexistence. 展开更多
关键词 nitrogen uptake preference Organic nitrogen Inorganic nitrogen Coniferous plantation ^(15)N natural abundance Isotopic mixing model
原文传递
How delaying post-silking senescence in lower leaves of maize plants increases carbon and nitrogen accumulation and grain yield 被引量:2
6
作者 Rongfa Li Dandan Hu +5 位作者 Hao Ren Qinglong Yang Shuting Dong Jiwang Zhang Bin Zhao Peng Liu 《The Crop Journal》 SCIE CSCD 2022年第3期853-863,共11页
Planting maize at high densities leads to early leaf senescence,and the resulting reduction in the number of lower leaves affects the plant’s root function and lowers its grain yield.However,the nature of the process... Planting maize at high densities leads to early leaf senescence,and the resulting reduction in the number of lower leaves affects the plant’s root function and lowers its grain yield.However,the nature of the process by which lower leaf senescence affects biomass accumulation and grain yield formation in maize is not clear.This study aimed to shed light on how these factors are related by investigating the effects of the plant growth regulator 6-benzyladenine(6-BA)on the senescence of lower leaves of maize plants.In two maize cultivars planted at densities of 67,500(low density,LD)and 90,000(high density,HD)plants ha^(-1),plants treated with 6-BA maintained a high green leaf area index(LAI)longer than control(CK)plants,enabling them to maintain a higher photosynthetic rate for a longer period of time and produce more biomass before reaching physiological maturity.Spraying the lower leaves of maize plants with a 6-BA solution increased the distribution of;C-photosynthates to their roots,lower leaves and bracts,a result that can be ascribed to a decreased retention of;C-photosynthates in the stem and grain.In both seasons of the experiment,maize plants treated with 6-BA accumulated more N in grain and maintained a higher N content in roots and leaves,especially in lower leaves,than CK.Increased C assimilation in the lower leaves may explain why N uptake in plants subjected to the 6-BA treatment exceeded that in CK plants and why both photosynthesis rate and dry matter accumulation were maintained throughout grain filling.Our results suggest that a suitable distribution of C and N in leaves post-silking may maintain plant root function,increase N use efficiency,maximize the duration of high LAI,and increase grain yield. 展开更多
关键词 13C-Photosynthate distribution nitrogen uptake Maize grain yield Delaying lower leaf senescence Post-silking
下载PDF
Wheat Straw Burial Improves Physiological Traits, Yield and Grain Quality of Rice by Regulating Antioxidant System and Nitrogen Assimilation Enzymes under Alternate Wetting and Drying Irrigation
7
作者 Yousef ALHAJ HAMOUD Hiba SHAGHALEH +5 位作者 WANG Ruke Willy Franz GOUERTOUMBO Amar Ali ADAM HAMAD Mohamed Salah SHETEIWY WANG Zhenchang GUO Xiangping 《Rice science》 SCIE CSCD 2022年第5期473-488,共16页
Wheat straw burial has great potential to sustain rice production under alternate wetting and drying(AWD)irrigation.A field experiment was conducted with three wheat straw burial treatments,including without straw bur... Wheat straw burial has great potential to sustain rice production under alternate wetting and drying(AWD)irrigation.A field experiment was conducted with three wheat straw burial treatments,including without straw burial(NSB),with light straw burial of 300 kg/hm^(2)(LSB)and dense straw burial of 800 kg/hm^(2)(DSB),as well as three AWD regimes:alternate wetting/moderate drying(AWMD),alternate wetting/severe drying(AWSD)and alternate wetting/critical drying(AWCD).The rice growth and grain quality were higher in LSB and NSB than those in NSB under the same AWD regime.The AWMD×DSB treatment resulted in the highest yield,brown rice rate,milled rice rate,amylose content and protein content.Conversely,the AWCD×NSB treatment led to the lowest yield,brown rice rate,milled rice rate,amylose content and protein content.The active absorption area and nitrate reductase activity of roots were higher in the AWMD×DSB treatment than those in the AWCD×NSB treatment,as the former increased organic carbon and nitrogen contents in the rhizosphere,whereas the latter reduced their availability.Total soluble protein content and glutamine synthetase activity were greater in the AWMD×DSB treatment than those in the AWCD×NSB treatment.The activities of superoxide dismutase and catalase were higher in the AWMD×DSB treatment compared with the AWCD×NSB treatment,leading to the amelioration of oxidative cell injury,as shown by a lower malonaldehyde level.This study suggested that farmers should implement AWMD irrigation after leaving the straw residues in the field,followed by deep tillage to improve soil quality and mitigate the drought stress cycles of AWD.This approach can improve rice growth and grain quality and alleviate the problems of disposal of straw residues and water scarcity for sustainable rice production. 展开更多
关键词 antioxidant enzyme activity wheat straw burial irrigation regime nitrogen uptake Oryza sativa grain quality YIELD
下载PDF
Maize-legume intercropping promote N uptake through changing the root spatial distribution,legume nodulation capacity,and soil N availability
8
作者 ZHENG Ben-chuan ZHOU Ying +9 位作者 CHEN Ping ZHANG Xiao-na DU Qing YANG Huan WANG Xiao-chun YANG Feng XIAO Te LI Long YANG Wen-yu YONG Tai-wen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第6期1755-1771,共17页
Legume cultivars affect N uptake,component crop growth,and soil physical and chemical characteristics in maize-legume intercropping systems.However,how belowground interactions mediate root growth,N fixation,and nodul... Legume cultivars affect N uptake,component crop growth,and soil physical and chemical characteristics in maize-legume intercropping systems.However,how belowground interactions mediate root growth,N fixation,and nodulation of different legumes to affect N uptake is still unclear.Hence,a two-year experiment was conducted with five planting patterns,i.e.,maize-soybean strip intercropping(IMS),maize-peanut strip intercropping(IMP),and corresponding monocultures(monoculture maize(MM),monoculture soybean(MS),and monoculture peanut(MP)),and two N application rates,i.e.,no N fertilizer(N-)and conventional N fertilizer(N+),to examine relationships between N uptake and root distribution of crops,legume nodulation and soil N availability.Results showed that the averaged N uptake per unit area of intercrops was significantly lower than the corresponding monocultures.Compared with the monoculture system,the N uptake of the intercropping systems increased by 31.7-45.4%in IMS and by 7.4-12.2%in IMP,respectively.The N uptake per plant of intercropped maize and soybean significantly increased by 61.6 and 31.8%,and that of intercropped peanuts significantly decreased by 46.6%compared with the corresponding monocultures.Maize and soybean showed asymmetrical distribution of roots in strip intercropping systems.The root length density(RLD)and root surface area density(RSAD)of intercropped maize and soybean were significantly greater than that of the corresponding monocultures.The roots of intercropped peanuts were confined,which resulted in decreased RLD and RSAD compared with the monoculture.The nodule number and nodule fresh weight of soybean were significantly greater in IMS than in MS,and those of peanut were significantly lower in IMP than in MP.The soil protease,urease,and nitrate reductase activities of maize and soybean were significantly greater in IMS and IMP than in the corresponding monoculture,while the enzyme activities of peanut were significantly lower in IMP than in MP.The soil available N of maize and soybean was significantly greater increased in IMS and IMP than in the corresponding monocultures,while that of IMP was significantly lower than in MP.In summary,the IMS system was more beneficial to N uptake than the IMP system.The intercropping of maize and legumes can promote the N uptake of maize,thus reducing the need for N application and improving agricultural sustainability. 展开更多
关键词 maize-legume strip intercropping nitrogen uptake soil enzyme activity soil available nitrogen root length density
下载PDF
Adjusting Nitrogen Application in Accordance with Soil Water Availability Enhances Yield and Water Use by Regulating Physiological Traits of Maize under Drip Fertigation
9
作者 Mingda Yang Shouchen Ma +3 位作者 Fujian Mei Li Wei Tongchao Wang Xiaokang Guan 《Phyton-International Journal of Experimental Botany》 SCIE 2021年第2期417-435,共19页
Knowledge of the interactive effects of water and nitrogen(N)on physio-chemical traits of maize(Zea mays L.)helps to optimize water and N management and improve productivity.A split-plot experiment was conducted with ... Knowledge of the interactive effects of water and nitrogen(N)on physio-chemical traits of maize(Zea mays L.)helps to optimize water and N management and improve productivity.A split-plot experiment was conducted with three soil water conditions(severe drought,moderate drought,and fully water supply referring to 45%-55%,65%-75%,and 85%-95%field capacity,respectively)and four N application rates(N0,N150,N240,and N330 referring to 0,150,240,330 kg N ha^(-1)respectively)under drip fertigation in 2014 and 2015 in the Huang-Huai-Hai Plain of China.The results indicated that drought stress inhibited physiological activity of plants(leaf relative water content,root bleeding sap,and net photosynthetic rate),resulting in low dry matter accumulation after silking,yield,and N uptake,whereas increased WUE and NUE.N application rates over than 150 kg ha^(-1)aggravated the inhibition of physiological activity under severe drought condition,while it was offset under moderate drought condition.High N application rates(N330)still revealed negative effects under moderate drought condition,as it did not consistently enhance plant physiological activity and significantly reduced N uptake as compared to the N240 treatment.With fully water supply,increasing N application rates synergistically enhanced physiological activity,promoted dry matter accumulation after silking,and increased yield,WUE,and N uptake.Although the N240 treatment reduced yield by 5.4%in average,it saved 27.3%N under full water supply condition as compared with N330 treatment.The results indicated that N regulated growth of maize in aspects of physiological traits,dry matter accumulation,and yield as well as water and N use was depended on soil water status.The appropriate N application rates for maize production was 150 kg ha^(-1)under moderate drought or 240 kg ha^(-1)under fully water supply under drip fertigation,and high N supply(>150 kg ha^(-1))should be avoided under severe drought condition. 展开更多
关键词 Interaction of water and nitrogen net photosynthetic rate root bleeding sap nitrogen uptake water use efficiency
下载PDF
Function, transport, and regulation of amino acids: What is missing in rice? 被引量:3
10
作者 Nan Guo Shunan Zhang +1 位作者 MingjiGu Guohua Xu 《The Crop Journal》 SCIE CSCD 2021年第3期530-542,共13页
Amino acids are essential plant compounds serving as the building blocks of proteins,the predominant forms of nitrogen(N)distribution,and signaling molecules.Plant amino acids derive from root acquisition,nitrate redu... Amino acids are essential plant compounds serving as the building blocks of proteins,the predominant forms of nitrogen(N)distribution,and signaling molecules.Plant amino acids derive from root acquisition,nitrate reduction,and ammonium assimilation.Many amino acid transporters(AATs)mediating transfer processes of amino acids have been functionally characterized in Arabidopsis,whereas the function and regulation of the vast majority of AATs in rice(Oryza sativa L.)and other crops remain unknown.In this review,we summarize the current understanding of amino acids in the rhizosphere and in metabolism.We describe their function as signal molecules and in regulating plant architecture,flowering time,and defense against abiotic stress and pathogen attack.AATs not only function in root acquisition and translocation of amino acids from source to sink organs,regulating N uptake and use efficiency,but also as transporters of non-amino acid substrates or as amino acid sensors.Several AAT genes show natural variations in their promoter and coding regions that are associated with altered uptake rate of amino acids,grain N content,and tiller number.Development of an amino acid transfer model in plants will advance the manipulation of AATs for improving rice architecture,grain yield and quality,and N-use efficiency. 展开更多
关键词 Amino acids Amino acid transporter Grain quality nitrogen uptake efficiency nitrogen utilization efficiency Rice architecture
下载PDF
Chemically and biologically activated biochars slow down urea hydrolysis and improve nitrogen use efficiency 被引量:1
11
作者 Nazmul H.ANTOR Shamim MIA +4 位作者 Md.M.HASAN Nowrose J.LIPI Keiji JINDO Miguel A.SANCHEZ-MONEDERO Md.H.RASHID 《Pedosphere》 SCIE CAS CSCD 2023年第4期659-669,共11页
Biochar is considered a potential technology to enhance chemical fertilizer use efficiency through intensification of the interactions between nutrients and the functional groups on biochar surfaces.However,little is ... Biochar is considered a potential technology to enhance chemical fertilizer use efficiency through intensification of the interactions between nutrients and the functional groups on biochar surfaces.However,little is known about how the application of activated biochars mixed with urea influences nitrogen(N)mineralization and crop performance in paddy fields.Here,a sawdust-derived fresh biochar(FBC)(ca.400℃)was activated chemically with 15%hydrogen peroxide and biologically with a nutrient solution mixed with a soil inoculum to obtain a chemically activated biochar(CBC)and a biologically activated biochar(BBC),respectively.The chemical and surface properties of FBC,CBC,and BBC were evaluated using spectroscopic methods,i.e.,Fourier transform infrared spectroscopy and 13C nuclear magnetic resonance,and potentiometric charge determination.The N retention capacity of biochars and their interaction with urea hydrolysis were examined in a laboratory incubation experiment.Additionally,a field experiment was carried out in a paddy field with the biochars unmixed or mixed with urea at a 1:1 ratio.Our results showed that negative surface functional groups and negative charges were increased on both activated biochars,especially CBC.Both activated biochars contributed to a significant reduction in urea-biochar suspension pH and increased N retention in the incubation experiment.Despite the enhanced surface properties of the activated biochars,no similar increases in rice biomass and grain yield were observed for these biochars in the field experiment.However,rice biomass,grain yield,apparent N use efficiency,and agronomic N use efficiency were significantly higher with the application of the three biochars compared to no-biochar application.Altogether,the results indicate that the application of urea mixed with biochar could enhance crop performance,especially in the case of activated biochar,which would enhance N retention in the soil,reducing N loss. 展开更多
关键词 chemical property crop yield functionalized biochar nitrogen uptake nutrient use efficiency PYROLYSIS
原文传递
Contrasting Characteristics of Lodging Resistance in Two Super-Rice Hybrids Differing in Harvest Index
12
作者 Zui Tao Tao Lei +4 位作者 Fangbo Cao Jiana Chen Xiaohong Yin Tianfeng Liang Min Huang 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第2期429-437,共9页
The“super rice”breeding program in China has been successful in developing high-yielding hybrids,including few with high harvest index values.However,there is limited information on the relationship between lodging ... The“super rice”breeding program in China has been successful in developing high-yielding hybrids,including few with high harvest index values.However,there is limited information on the relationship between lodging resistance and harvest index,and the mechanisms underlying the relationship in super-rice hybrids.In this study,a two-year field experiment was conducted to compare lodging resistance and its related traits between two superrice hybrids differing in harvest index,i.e.,Guiliangyou 2(G2)with a high harvest index and Y-liangyou 1(Y1)with a typical harvest index of modern high-yielding rice varieties.Results showed that compared to Y1,G2 was lower in plant height due to its lower aboveground N uptake,and its higher stem breaking resistance(i.e.,lower stem breaking index)resulted from a lower stem height at its center of gravity.Consequently,G2 had a higher lodging resistance(i.e.,lower plant lodging index)than Y1.This study suggests that developing super-rice hybrids with high harvest index values is a possible way to achieve both high grain yield and strong lodging resistance in rice. 展开更多
关键词 Harvest index nitrogen uptake plant height lodging resistance stem breaking resistance super-rice hybrid
下载PDF
Biochar Application Enhanced Post-Heading Radiation Use Efficiency in Field-Grown Rice (Oryza sativa L.)
13
作者 Xiaohong Yin Zui Tao +3 位作者 Jiana Chen Fangbo Cao Min Huang Yingbin Zou 《Phyton-International Journal of Experimental Botany》 SCIE 2020年第2期415-422,共8页
It has been shown that adding biochar to soil can improve nitrogen(N)uptake and utilization in rice(Oryza sativa L.).However,there is a lack of research on the physiological alterations of rice as a result of the chan... It has been shown that adding biochar to soil can improve nitrogen(N)uptake and utilization in rice(Oryza sativa L.).However,there is a lack of research on the physiological alterations of rice as a result of the changes in nitrogen uptake due to the addition of biochar.This study conducted field experiments in 2015 and 2016 with the goal of testing the hypothesis that the application of biochar would enhance radiation use efficiency(RUE)of rice by improving the plant’s ability to take in and utilize nitrogen.Our results demonstrated that the application of biochar(20 t ha−1)induced no significant effects on pre-heading specific leaf weight(SLW),nitrogen uptake(NUpre),and leaf area index(LAI)at heading,the ratios of LAI/NUpre and SLW/Nupre,or pre-heading RUE.How-ever,biochar application significantly increased post-heading nitrogen uptake(NUpost),ratios of NUpost/SLWand NUpost/LAI,and post-heading RUE.These results indicate that the application of biochar can improve the plant’s nitrogen uptake and RUE in field-grown rice during the post-heading period,which confirms our hypothesis. 展开更多
关键词 BIOCHAR nitrogen uptake radiation use efficiency RICE
下载PDF
Influences of alternate partial root-zone irrigation and urea rate on water-and nitrogen-use efficiencies in tomato 被引量:4
14
作者 Liu Xiaogang Li Fusheng +2 位作者 Zhang Fucang Cai Huanjie Yang Qiliang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第6期94-102,共9页
Traditional water and fertilizer inputs are often much higher than the actual demands of tomato,which causes a reduction in water-and fertilizer-use efficiencies.To investigate the advantage of alternate partial root-... Traditional water and fertilizer inputs are often much higher than the actual demands of tomato,which causes a reduction in water-and fertilizer-use efficiencies.To investigate the advantage of alternate partial root-zone irrigation(AI)on water-and nitrogen(N)-use efficiencies of tomato modified by water and N management,taking conventional irrigation(CI)as the control,the effects of AI on root morphology and activity,fruit yield and water and N use efficiency were studied using pot experiments.There were four combinations of irrigation levels and growing stages of tomato for AI,i.e.AI_(1)(high water(W_(H))from blooming to harvest stage(BHS)),AI_(2)(W_(H)from blooming to fruit setting stage(BFS)and low water(W_(L))at the harvest stage(HS)),AI_(3)(W_(L)at BFS and W_(H)at HS)and AI_(4)(W_(L)at BHS)at three urea rates,i.e.low urea rate(NL),middle urea rate(N_(M))and high urea rate(N_(H))in the form of urea.Irrigation quotas for W_(H)and W_(L)in AI at BFS or HS were 80%and 60%of that in CI,respectively.Compared to CI,AI decreased water consumption by 16.0%-33.1%and increased water use efficiency of yield(WUE_(y))and dry mass(WUE_(d))by 6.7%-11.9%and 10.2%-15.9%,respectively.AI_(1)did not decline yield,total N uptake(TNU)and N use efficiency(NUE)significantly.Compared to NL,N_(M)enhanced tomato yield,TNU,WUE_(y)and WUE_(d)by 28.5%,35.3%,22.6%and 16.3%,respectively.Compared to CINL,AI_(1)N_(M)reduced water consumption by 12.5%,but increased tomato yield,TNU,WUE_(y)and WUE_(d)by 35.5%,58.4%,54.4%and 53.7%,respectively.Therefore,AI_(1)can improve water use efficiency and total N uptake of tomato simultaneously at medium urea rate. 展开更多
关键词 alternate partial root-zone irrigation nitrogen level nitrogen uptake TOMATO water use efficiency YIELD
原文传递
Integrated rice management simultaneously improves rice yield and nitrogen use efficiency in various paddy fields 被引量:1
15
作者 Yujiao DONG Fanwen ZENG +6 位作者 Jiang YUAN Guangbin ZHANG Yuanxue CHEN Xuejun LIU Padilla HILARIO Tusheng REN Shihua LU 《Pedosphere》 SCIE CAS CSCD 2020年第6期863-873,共11页
The hilly area of Southwest China is a typical rice production area which is limited by seasonal droughts and low temperature in the early rice growth period.A field experiment was conducted on three typical paddy fie... The hilly area of Southwest China is a typical rice production area which is limited by seasonal droughts and low temperature in the early rice growth period.A field experiment was conducted on three typical paddy fields(low-lying paddy field,medium-elevation paddy field,and upland paddy field)in this region.Nitrogen(N)treatment(180 kg N ha-1 year-1)was compared to a control treatment(0 kg N ha-1 year-1)to evaluate the effects of integrated rice management(IRM)on rice growth,grain yield,and N utilization.Integrated rice management integrated raised beds containing plastic mulch,furrow irrigation,and triangular transplanting.In comparison to traditional rice management(TRM),IRM promoted rice tiller development,with 7–13 more tillers per cluster at the maximum tillering stage and 1–6 more tillers per cluster at the end of tillering stage.Integrated rice management significantly increased the rice aboveground biomass by 34.4%–109.0%in different growth periods and the aboveground N uptake by 25.3%–159.0%.Number of productive tillers significantly increased by 33.0%,resulting in a 33.0%increase in grain yield and 8.0%improvement of N use efficiency(NUE).Grain yields were significantly increased in all three paddy fields assessed,with IRM being the most important factor for grain yield and productive tiller development.Effects of paddy field type and N level on N uptake by aboveground plants were reflected in the rice reproductive growth period,with the effects of IRM more striking due to the dry climate conditions.In conclusion,IRM simultaneously improved rice yield and NUE,presenting a valuable rice management technique in the paddy fields assessed. 展开更多
关键词 grain yield hilly area nitrogen uptake paddy field type plastic mulch traditional rice management
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部