Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,cau...Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value.展开更多
Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types withi...Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.展开更多
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev...The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement.展开更多
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr...Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations.展开更多
The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Popula...The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Population size was enhanced and the diary was developed intensively resulting in the enhancement of domestic and husbandry sewage production that increased as well. The natural intact Hula Valley-Lake Kinneret ecosystem was heavily anthropogenically interrupted: The Hula was drained and Kinneret became a national source for domestic water supply. Some aspects of the environmental and water quality protection policy of the system are presented. The causation and operational management implications for the reduction of Nitrogen and Phosphorus migration from the Hula Valley are discussed. Drastic (81%) restriction of aquaculture accompanied by sewage totally removed achieved a reasonable improvement in pollution control which was also supported by the Hula Project. The implications of anthropogenic intervention in the process of environmental management design are presented.展开更多
[Objective] To study the effects of Zinc on the yield,nitrogen/phosphorus/potassium/Zinc uptake and distribution of different genotypes of maize.[Method] Using two different genotypes of maize as materials,the effects...[Objective] To study the effects of Zinc on the yield,nitrogen/phosphorus/potassium/Zinc uptake and distribution of different genotypes of maize.[Method] Using two different genotypes of maize as materials,the effects of Zn on the yield,N/P/K /Zn uptake and distribution of different genotypes of maize were studied by pot cultivation.[Result] Appropriate Zn supply could improve the grain number per kernel.The Zn content in different organs of maize showed little difference under low Zn treatment (Zn0,Zn1).With the increase of Zn supply,Zn content in leaf,stem and sheath rapidly increased,but the increasing amplitude of Zn content in the kernel and bract were less.The excessive Zn in maize was mainly translocated in lower organs to reduce the damage of them to plants.Different Zn supply levels had less effects on the absorption and translocation of N,P and K in low-Zn insensitive variety Mudan 9.While the absorption and translation of N,P,K in low Zn sensitive variety (Sidan 19) was more easily influenced by the amount of Zn supplied.[Conclusion] Appropriate Zn supply could enhance the maize yield and utilization rate of N and K,and reduce the absorption and utilization of P.展开更多
[Objective] Nitrogen and phosphorus losses of surface runoff in various crop rotation systems in the north of Erhai Lake basin were studied with the objective to provide references for risk evaluation of environmental...[Objective] Nitrogen and phosphorus losses of surface runoff in various crop rotation systems in the north of Erhai Lake basin were studied with the objective to provide references for risk evaluation of environmental pollution and formulating countermeasures to control the nonpoint source pollution from agriculture.[Method] Water samples collected in four typical crop rotation systems distributed in seven towns(townships) in the north of Erhai Lake basin were investigated,as well as the fertilizer input,to explore the dynamic change of nitrogen and phosphorus content in surface water of farmland and ditch water,and the correlation between fertilizer input and the concentrations of nitrogen and phosphorus in the surface water of farmland and in the ditch water.[Result] The results showed that nitrogen loss in surface water of farmland in different crop rotation systems differed greatly,and the risk of nitrogen loss was 38% lower in broad bean-rice crop rotation than that in garlic-rice crop rotation.The water soluble nitrogen was the primary form of nitrogen loss.The content of water soluble nitrogen was significantly higher in garlic-rice crop rotation than that in the other rotation systems,and the concentrations of nitrogen in the surface water of farmland in different crop rotation systems followed the sequence below:garlic-rice crop rotationryegrass-rice crop rotationbroad bean-rice crop rotationrape-rice crop rotation.The loss of phosphorus in the surface water of farmland was relatively low and phosphorus combined with silt was the primary form for phosphorus loss.There was no significant difference of the loss of various forms of phosphorus in different crop rotation systems.The contents of total nitrogen and total phosphorus in the surface water of farmland were higher than that in ditch water,with increasing rates of total nitrogen and total phosphorus in ditch water of 72% and 82%,respectively.Topdressing was the critical reason for the high concentrations of nitrogen and phosphorus in the surface water,which also caused the increasing load to the ditch water.[Conclusion] Both the nitrogen and phosphorus loss were the highest in garlic-rice crop rotation.Reasonable crop rotation systems should be established based on both the environmental and economic benefits.This study provided references for controlling the nonpoint source pollution of farmland and improving the water quality of Erhai Lake.展开更多
[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake an...[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake and effects of compound fertilizer, controlled release fertilizer and controlled release fertilizer (reduced by 20%) on loss of nitrogen and phosphorus through runoff and leaching were analyzed. [Result] Loss of nitrogen and phosphorus mainly occurred in early stage of fertilizing; loss caused by runoff accounted for over 98% and caused by leaching was lower than 2%, indicating that nutrients of rice and corn mainly lost through runoff. As for controlled release fertilizers with 20% reduced, total loss of N and P decreased by 60% and 63% in rice field and reduced by 27.8% and 34% in corn field, respectively, indicating that controlled release fertilizer would maintain nutrients in soils high in later period of plant growth, improve use efficiency of N and P, reduce N and P loss in rice and corn fields in rainy season, and decrease non-point pollution. [Conclusion] The research suggested that controlled release fertilizer would slow down the loss of nutrients in farmlands, providing scientific references and technological support for extension of controlled release fertilizer and reduction of agricultural non-point pollution.展开更多
[Objective] The aim was to modify the application amount of N,P and K fertilizer so as to provide a reference for establishing balanced fertilization index system of banana.[Method]The N,P and K fertilizer "3414" te...[Objective] The aim was to modify the application amount of N,P and K fertilizer so as to provide a reference for establishing balanced fertilization index system of banana.[Method]The N,P and K fertilizer "3414" test was carried out on banana,and then regression analysis was performed on the fertilizer effect.Ternary quadratic,binary quadric and one-variable quadratic regression equations for the fertilizer effect on the banana yield were constructed.[Result]Suitable amount of N,P and K fertilizer had significant yield improving effect,whereas overdose of fertilizer application led to decreasing of utilization rate of fertilizer.Therefore,suitable amount of N,P and K fertilizer should be selected in production.It could be concluded that one-variable quadratic regression equations was the best model to calculate the suitable fertilizer amount.The best yield range of banana in the tested field was 44.193-45.904 t/hm2,while the corresponding optimum application amount of N,P2O5 and K2O was 795.1,262.3 and 1 236.9 kg/hm2 respectively,and the ratio among nitrogen,phosphorus and potassium are 1∶0.33∶1.55.[Conclusion]The result in this study could provide references for the soil types similar to the tested field.展开更多
From September 1999 to July 2000, N and P concentrations of fine roots were measured with the method of sequential soil core at bimonthly intervals in a mixed forest of Tsoong's tree (Tsoongiodendron odorum Chun) ...From September 1999 to July 2000, N and P concentrations of fine roots were measured with the method of sequential soil core at bimonthly intervals in a mixed forest of Tsoong's tree (Tsoongiodendron odorum Chun) and Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) in Sanming, Fujian. The results showed that N, P concentration of Chinese fir and Tsoong's tree in fine roots were negatively related to root diameter size. The concentrations of N and P in living roots and dead roots were compared. The order of N concentration in fine roots in different samples was Tsoong's tree>undergrowth>Chinese fir, while that of P was undergrowth>Tsoong's tree>Chinese fir. For Chinese fir, the seasonal change of N, P concentrations in fine roots with various diameter classes showed a single-apex curve with a maximum in September. For Tsoong's tree, maximized concentration of N in fine roots appeared in July or September and maximized P concentration in May.展开更多
The aim of the study is to investigate the absorption laws of nitrogen, phosphorus, and potassium, and proper nitrogen application in Chuanxiangyou 9838 under no-tillage cultivation. Five nitrogen application treatmen...The aim of the study is to investigate the absorption laws of nitrogen, phosphorus, and potassium, and proper nitrogen application in Chuanxiangyou 9838 under no-tillage cultivation. Five nitrogen application treatments were designed to analyze the absorption laws of N, P and K, and to discuss the effects of different N fertilizer application amounts on yield and yield composition factors of Chuanxiangyou 9838. The results showed that gross nutrient absorption in Chuanxiangyou 9838 was greatly varied at different developmental stages under rice-rape rotation with no-tillage. The maximum N absorption in Chuanxiangyou 9838 appeared at jointing stage followed by heading stage, thirdly the tillefing stage ; the P absorption in Chuanxiangyou 9838 presented the consecutively slight increase during seedling stage and mature stage ; the K absorption in Chuanxiangyou 9838 was mainly conducted from jointing stage to heading stage, during which K absorption accounts for 73.4% of the total absorption in whole developmental stage. Consequently, N fertilizer should be applied earlier ( before jointing stage), P fertilizer is suitable as base fertilizer and application of K fertilizer should be preferably conducted at early-middle period. When the yield reached 11 t/hm^2, the optimal N application amount in Chuanxiangyou 9838 was about 165 kg/hm^2.展开更多
Objective] The research aimed to study the characteristics of nitrogen and phosphorus pollution of 30 natural outcrop springs in Wudalianchi, which provides a theoretical basis for the sustainable development and util...Objective] The research aimed to study the characteristics of nitrogen and phosphorus pollution of 30 natural outcrop springs in Wudalianchi, which provides a theoretical basis for the sustainable development and utilization and protection of Wudalianchi natural mineral resources. [Method] Choosing the 30 natural outcrop spring representatives in different regions, samples were collected in low water period, normal water period, wet period respectively, and the content of nitrogen, phosphorus and other contaminants in the samples were determined. Besides, the pollution characteristics of nitrogen and phosphorus in Wudalianchi natural outcrop spring were analyzed. [Result] The 30 natural outcrop spring in Wudalianchi area were seriously polluted by nitrogen. Total nitrogen and nitrate nitrogen were the main forms of nitrogen pollution. The content of total phosphorus and ammonia nitrogen were low. [Conclusion] The natural outcrop spring is mainly caused by agricultural non-point source pollution.展开更多
The rapid invasion of the plant Spartina alterniflora in coastal wetland areas can threaten the capacity of their soils to store carbon(C),nitrogen(N),and sulfur(S).In this study,we investigated the spatial and tempor...The rapid invasion of the plant Spartina alterniflora in coastal wetland areas can threaten the capacity of their soils to store carbon(C),nitrogen(N),and sulfur(S).In this study,we investigated the spatial and temporal distribution patterns of C,N and S of both soil and(native and invasive)plants in four typical coastal wetlands in the core area of the Yancheng National Nature Reserve,China.The results show that the invasive S.alterniflora greatly influenced soil properties and increased soil C,N and S storage capacity:the stock(mean±standard error)of soil organic carbon(SOC,(3.56±0.36)kg/m^3),total nitrogen(TN,(0.43±0.02)kg/m^3),and total sulfur(TS,(0.69±0.11)kg/m^3)in the S.alterniflora marsh exceeded those in the adjacent bare mudflat,Suaeda salsa marsh,and Phragmites australis marsh.Because of its greater biomass,plant C((1193.7±133.6)g/m^2),N((18.8±2.4)g/m^2),and S((9.4±1.5)g/m^2)storage of S.alterniflora was also larger than those of co-occurring native plants.More biogenic elements circulated in the soil-plant system of the S.alterniflora marsh,and their spatial and temporal distribution patterns were also changed by the S.alterniflora invasion.Soil properties changed by S.alterniflora’s invasion thereby indirectly affected the accumulation of soil C,N and S in this wetland ecosystem.The SOC,TN,and TS contents were positively correlated with soil electrical conductivity and moisture,but negatively correlated with the pH and bulk density of soil.Together,these results indicate that S.alterniflora invasion altered ecosystem processes,resulted in changes in net primary production and litter decomposition,and increased the soil C,N and S storage capacity in the invaded ecosystems in comparison to those with native tallgrass communities in the coastal wetlands of East China.展开更多
Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using...Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using bagasse lignin,denoted as lignin-derived carbon(LC).By adjusting the ratio of nitrogen source and annealing temperature,we obtained the ultrathin graphitic lignin carbon(LC-4-1000)with abundant wrinkles with high surface area of 1208 m2g_1 and large pore volume of 1.40 cm3g_1.In alkaline medium,LC-4-1000 has more positive half-wave potential and nearly current density compared to commercial Pt/C for oxygen reduction reaction(ORR).More importantly,LC-4-1000 also exhibits comparable activity and superior stability for ORR in acid medium due to its high graphitic N ratio and a direct four electron pathway for ORR.This study develops a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in fuel cells.展开更多
Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cho...Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cholesterol-reducing and other pharmacological effects. The objective of this study was to investigate the effect of different concentrations of N (5, 10, and 20 mmol L-a, denoted by N5, N10 and N20) and S (0,5, 1, and 2 mmol L^-1, denoted by S0.5, S1 and S2) on the yield and GSs in pakchoi (Brassica campestris L. ssp. chinensis var. communis) in hydroponics. Results showed that N10 and N20 significantly enhanced the yield compared with N5, however, N20 had a negative effect relative to N10. Only with N10 and N20 low S supply (S0.5) reduced the yield. The concentrations of aliphatic GSs, aromatic GS and total GSs were enhanced by N5 and indolyl GSs were enhanced by N20. S2 enhanced the concentration of individual GS and total GSs. The concentrations of indolyl GSs were maximized in N20S2 treatment, whereas the highest concentrations of aliphatic GSs, aromatic GS and total GSs were found in N5S2 treatment. Effects of N and S on aliphatic GSs were higher than on indolyl GSs. The results suggest that the accumulation of aliphatic GSs and aromatic GS could be enhanced by low N and high S and restricted by high N while that of indolyl GSs could be enhanced by high N and high S.展开更多
The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility...The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility. The use efficiency of nitrogen, phosphorus, and potassium is controlled by complex gene networks that co-ordinate uptake, re-distribution, assimilation, and storage of these nutrients. Great progress has been made in breeding nutrient-efficient crops by molecularly engineering root traits desirable for efficient acquisition of nutrients from soil, transporters for uptake, redistribution and homeostasis of nutrients, and enzymes for efficient assimilation. Regulatory and transcription factors modulating these processes are also valuable in breeding crops with improved nutrient use efficiency and yield performance.展开更多
Animal agriculture contributes to environmental pollutions through the surplus nitrogen(N), phosphorus(P), and trace minerals that animals excrete. Animal nutritionists have sought alternatives to formulate more e...Animal agriculture contributes to environmental pollutions through the surplus nitrogen(N), phosphorus(P), and trace minerals that animals excrete. Animal nutritionists have sought alternatives to formulate more efficient diets and reduce production costs and environmental concerns. In general, element excretions may be reduced by avoiding the overfeeding of specific elements or using nutritional approaches to improve element utilizations by the animals. Several nutritional strategies are possible for minimizing N, P, and trace mineral excretions: 1) to accurately meet dietary N, P and trace mineral requirements of animals, which includes reducing the dietary crude protein contents with synthetic amino acids or feeding high rumenally undegraded protein, minimizing the adequate levels of dietary P and trace elements, adopting phase or group-feeding program, and considering the bioavailable trace mineral contents in the feed ingredients; 2) to improve the bioavailabilities of dietary N, P, and trace elements for animals by using some additives(enzymes, growth promoters, probiotics, prebiotics, vitamin D isomers, and organic acids); 3) to use highly available P sources or organic trace elements. In the future, nutrient strategies must be integrated into total production systems so that animal production systems are environmentally safe as well as economically viable.展开更多
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was...To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.展开更多
The brown planthopper(BPH),Nilaparvata lugens(St?l),appeared as a devastating pest of rice in Asia. Experiments were conducted to study the effects of three nutrients,nitrogen(N),phosphorus(P) and potassium(K),on BPH ...The brown planthopper(BPH),Nilaparvata lugens(St?l),appeared as a devastating pest of rice in Asia. Experiments were conducted to study the effects of three nutrients,nitrogen(N),phosphorus(P) and potassium(K),on BPH and its host rice plants. Biochemical constituents of BPH and rice plants with varying nutrient levels at different growth stages,and changes in relative water content(RWC) of rice plants were determined in the laboratory. Feeding of BPH and the tolerance of rice plants to BPH with different nutrient levels were determined in the nethouse. Concentrations of N and P were found much higher in the BPH body than in its host rice plants,and this elemental mismatch is an inherent constraint on meeting nutritional requirements of BPH. Nitrogen was found as a more limiting element for BPH than other nutrients in rice plants. Application of N fertilizers to the rice plants increased the N concentrations both in rice plants and BPH while application of P and K fertilizers increased their concentrations in plant tissues only but not in BPH. Nitrogen application also increased the level of soluble proteins and decreased silicon content in rice plants,which resulted in increased feeding of BPH with sharp reduction of RWC in rice plants ultimately caused susceptible to the pest. P fertilization increased the concentration of P in rice plant tissues but not changed N,K,Si,free sugar and soluble protein contents,which indicated little importance of P to the feeding of BPH and tolerance of plant against BPH. K fertilization increased K content but reduced N,Si,free sugar and soluble protein contents in the plant tissues which resulted in the minimum reduction of RWC in rice plants after BPH feeding,thereby contributed to higher tolerance of rice plants to brown planthopper.展开更多
A survey concerning the concentration of the nutrients in the Three Gorges Reservoir Area was carried out. This paper presents the parameters(NO 3 - N, NO 2 - N, Kjeldahl N, non ionic ammonia, P PO 4 and TP)...A survey concerning the concentration of the nutrients in the Three Gorges Reservoir Area was carried out. This paper presents the parameters(NO 3 - N, NO 2 - N, Kjeldahl N, non ionic ammonia, P PO 4 and TP) determined at 16 sampling sites from 1997 to 1999 The dominant soluble nitrogen form was NO 3 - N followed by Kjeldahl N, NO 2 - N and non ionic ammonia. Mean values of NO 3 - N, NO 2 - N, Kjeldahl N and non ionic ammonia ranged from 0 50 to 2 37 mg/L, 0 022 to 0 084 mg/L, 0 33 to 0 99 mg/L and 0 007 to 0 092 mg/L respectively. Mean values of P PO 4 at most sampling sites were higher than 0 1 mg/L for subject to eutrophication. The major factors influencing the concentrations of N and P might be agricultural runoff, municipal and industrial effluents. In addition, 6 kinds of soil were sampled at the area where would inundated after the dam completed. Two approaches were adopted to simulate the N and P release from the inundated soils. The results showed that the soils would release nitrogen and phosphorus to the overlying water when the soils were inundated. The characteristics of soil affected the equilibrium concentrations of N and P between the soil and the overlying water.展开更多
基金the Xinjiang Science and Technology Support Project Plan(2022E02026)the Xinjiang Agricultural University Graduate Research and Innovation Programme(XJAUGRI2023049).
文摘Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value.
基金This work was supported by the National Natural Science Foundation of China(32171765).
文摘Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.
基金This work was supported by Guizhou Provincial Basic Research Program(Natural Science),Grant Number Qiankehejichu-ZK[2021]YB133Guizhou Provincial Scientific and Technological Program,Grant Number Qiankehehoubuzhu[2020]3001National Natural Science Foundation of China-Guizhou Provincial People’s Government Karst Science Research Centre(U1612442).
文摘The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement.
基金supported by the National Key R&D Program of China (2022YFD2201100)Natural Science Foundation of Heilongjiang Province of China (TD2023C006)the Fundamental Research Funds for the Central Universities (2572022DS13).
文摘Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations.
文摘The Hula Valley was drained in 1957. The land use was modified from natural wetland and old shallow lake ecosystems to agricultural development. About half of the drained land area was utilized for aquaculture. Population size was enhanced and the diary was developed intensively resulting in the enhancement of domestic and husbandry sewage production that increased as well. The natural intact Hula Valley-Lake Kinneret ecosystem was heavily anthropogenically interrupted: The Hula was drained and Kinneret became a national source for domestic water supply. Some aspects of the environmental and water quality protection policy of the system are presented. The causation and operational management implications for the reduction of Nitrogen and Phosphorus migration from the Hula Valley are discussed. Drastic (81%) restriction of aquaculture accompanied by sewage totally removed achieved a reasonable improvement in pollution control which was also supported by the Hula Project. The implications of anthropogenic intervention in the process of environmental management design are presented.
基金Supported by National "11th five-year" Plan Science and Technolo-gy Support Project (2006BAD02A11)"11th five-year plan" of Tackling Key Problems Projects of Heilongjiang Province(GA07B101)~~
文摘[Objective] To study the effects of Zinc on the yield,nitrogen/phosphorus/potassium/Zinc uptake and distribution of different genotypes of maize.[Method] Using two different genotypes of maize as materials,the effects of Zn on the yield,N/P/K /Zn uptake and distribution of different genotypes of maize were studied by pot cultivation.[Result] Appropriate Zn supply could improve the grain number per kernel.The Zn content in different organs of maize showed little difference under low Zn treatment (Zn0,Zn1).With the increase of Zn supply,Zn content in leaf,stem and sheath rapidly increased,but the increasing amplitude of Zn content in the kernel and bract were less.The excessive Zn in maize was mainly translocated in lower organs to reduce the damage of them to plants.Different Zn supply levels had less effects on the absorption and translocation of N,P and K in low-Zn insensitive variety Mudan 9.While the absorption and translation of N,P,K in low Zn sensitive variety (Sidan 19) was more easily influenced by the amount of Zn supplied.[Conclusion] Appropriate Zn supply could enhance the maize yield and utilization rate of N and K,and reduce the absorption and utilization of P.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest,China(201003014-6)the National Natural Science Foundation of China(31160413)~~
文摘[Objective] Nitrogen and phosphorus losses of surface runoff in various crop rotation systems in the north of Erhai Lake basin were studied with the objective to provide references for risk evaluation of environmental pollution and formulating countermeasures to control the nonpoint source pollution from agriculture.[Method] Water samples collected in four typical crop rotation systems distributed in seven towns(townships) in the north of Erhai Lake basin were investigated,as well as the fertilizer input,to explore the dynamic change of nitrogen and phosphorus content in surface water of farmland and ditch water,and the correlation between fertilizer input and the concentrations of nitrogen and phosphorus in the surface water of farmland and in the ditch water.[Result] The results showed that nitrogen loss in surface water of farmland in different crop rotation systems differed greatly,and the risk of nitrogen loss was 38% lower in broad bean-rice crop rotation than that in garlic-rice crop rotation.The water soluble nitrogen was the primary form of nitrogen loss.The content of water soluble nitrogen was significantly higher in garlic-rice crop rotation than that in the other rotation systems,and the concentrations of nitrogen in the surface water of farmland in different crop rotation systems followed the sequence below:garlic-rice crop rotationryegrass-rice crop rotationbroad bean-rice crop rotationrape-rice crop rotation.The loss of phosphorus in the surface water of farmland was relatively low and phosphorus combined with silt was the primary form for phosphorus loss.There was no significant difference of the loss of various forms of phosphorus in different crop rotation systems.The contents of total nitrogen and total phosphorus in the surface water of farmland were higher than that in ditch water,with increasing rates of total nitrogen and total phosphorus in ditch water of 72% and 82%,respectively.Topdressing was the critical reason for the high concentrations of nitrogen and phosphorus in the surface water,which also caused the increasing load to the ditch water.[Conclusion] Both the nitrogen and phosphorus loss were the highest in garlic-rice crop rotation.Reasonable crop rotation systems should be established based on both the environmental and economic benefits.This study provided references for controlling the nonpoint source pollution of farmland and improving the water quality of Erhai Lake.
基金Supported by Major Project of Control and Treatment on Domestic Water Pollution(2012ZX07103003)National 973 Project(2008CB418006)Science and Technology Foundation for Distinguished Young Schlors in Anhui Province(10040606Y30)~~
文摘[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake and effects of compound fertilizer, controlled release fertilizer and controlled release fertilizer (reduced by 20%) on loss of nitrogen and phosphorus through runoff and leaching were analyzed. [Result] Loss of nitrogen and phosphorus mainly occurred in early stage of fertilizing; loss caused by runoff accounted for over 98% and caused by leaching was lower than 2%, indicating that nutrients of rice and corn mainly lost through runoff. As for controlled release fertilizers with 20% reduced, total loss of N and P decreased by 60% and 63% in rice field and reduced by 27.8% and 34% in corn field, respectively, indicating that controlled release fertilizer would maintain nutrients in soils high in later period of plant growth, improve use efficiency of N and P, reduce N and P loss in rice and corn fields in rainy season, and decrease non-point pollution. [Conclusion] The research suggested that controlled release fertilizer would slow down the loss of nutrients in farmlands, providing scientific references and technological support for extension of controlled release fertilizer and reduction of agricultural non-point pollution.
基金Supported by National Science and Technology Support Program(2007BAD89B14)Science and Technology Project of Guangdong Province(2009B020201011)~~
文摘[Objective] The aim was to modify the application amount of N,P and K fertilizer so as to provide a reference for establishing balanced fertilization index system of banana.[Method]The N,P and K fertilizer "3414" test was carried out on banana,and then regression analysis was performed on the fertilizer effect.Ternary quadratic,binary quadric and one-variable quadratic regression equations for the fertilizer effect on the banana yield were constructed.[Result]Suitable amount of N,P and K fertilizer had significant yield improving effect,whereas overdose of fertilizer application led to decreasing of utilization rate of fertilizer.Therefore,suitable amount of N,P and K fertilizer should be selected in production.It could be concluded that one-variable quadratic regression equations was the best model to calculate the suitable fertilizer amount.The best yield range of banana in the tested field was 44.193-45.904 t/hm2,while the corresponding optimum application amount of N,P2O5 and K2O was 795.1,262.3 and 1 236.9 kg/hm2 respectively,and the ratio among nitrogen,phosphorus and potassium are 1∶0.33∶1.55.[Conclusion]The result in this study could provide references for the soil types similar to the tested field.
基金The Foundation of Post-doctoral Research of China (1999, No 10), the Foundation for University Key Teacher by the Ministry of Ed
文摘From September 1999 to July 2000, N and P concentrations of fine roots were measured with the method of sequential soil core at bimonthly intervals in a mixed forest of Tsoong's tree (Tsoongiodendron odorum Chun) and Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) in Sanming, Fujian. The results showed that N, P concentration of Chinese fir and Tsoong's tree in fine roots were negatively related to root diameter size. The concentrations of N and P in living roots and dead roots were compared. The order of N concentration in fine roots in different samples was Tsoong's tree>undergrowth>Chinese fir, while that of P was undergrowth>Tsoong's tree>Chinese fir. For Chinese fir, the seasonal change of N, P concentrations in fine roots with various diameter classes showed a single-apex curve with a maximum in September. For Tsoong's tree, maximized concentration of N in fine roots appeared in July or September and maximized P concentration in May.
基金Project of Scientific and Technical Supporting Programs (2006AD05B06)Key Technologies Research and Development Program of Sichuan Province during the 10th Five-year Plan During the 11th Five-year Plan(2006YZGG-28)the project from International Plant Nutrition Institute (IPNI)~~
文摘The aim of the study is to investigate the absorption laws of nitrogen, phosphorus, and potassium, and proper nitrogen application in Chuanxiangyou 9838 under no-tillage cultivation. Five nitrogen application treatments were designed to analyze the absorption laws of N, P and K, and to discuss the effects of different N fertilizer application amounts on yield and yield composition factors of Chuanxiangyou 9838. The results showed that gross nutrient absorption in Chuanxiangyou 9838 was greatly varied at different developmental stages under rice-rape rotation with no-tillage. The maximum N absorption in Chuanxiangyou 9838 appeared at jointing stage followed by heading stage, thirdly the tillefing stage ; the P absorption in Chuanxiangyou 9838 presented the consecutively slight increase during seedling stage and mature stage ; the K absorption in Chuanxiangyou 9838 was mainly conducted from jointing stage to heading stage, during which K absorption accounts for 73.4% of the total absorption in whole developmental stage. Consequently, N fertilizer should be applied earlier ( before jointing stage), P fertilizer is suitable as base fertilizer and application of K fertilizer should be preferably conducted at early-middle period. When the yield reached 11 t/hm^2, the optimal N application amount in Chuanxiangyou 9838 was about 165 kg/hm^2.
基金Supported by Basic Scientific Research Program of Heilongjiang Province~~
文摘Objective] The research aimed to study the characteristics of nitrogen and phosphorus pollution of 30 natural outcrop springs in Wudalianchi, which provides a theoretical basis for the sustainable development and utilization and protection of Wudalianchi natural mineral resources. [Method] Choosing the 30 natural outcrop spring representatives in different regions, samples were collected in low water period, normal water period, wet period respectively, and the content of nitrogen, phosphorus and other contaminants in the samples were determined. Besides, the pollution characteristics of nitrogen and phosphorus in Wudalianchi natural outcrop spring were analyzed. [Result] The 30 natural outcrop spring in Wudalianchi area were seriously polluted by nitrogen. Total nitrogen and nitrate nitrogen were the main forms of nitrogen pollution. The content of total phosphorus and ammonia nitrogen were low. [Conclusion] The natural outcrop spring is mainly caused by agricultural non-point source pollution.
基金Under the auspices of National Basic Research Program of China(No.2012CB956100)National Natural Science Foundation of China(No.41301085).
文摘The rapid invasion of the plant Spartina alterniflora in coastal wetland areas can threaten the capacity of their soils to store carbon(C),nitrogen(N),and sulfur(S).In this study,we investigated the spatial and temporal distribution patterns of C,N and S of both soil and(native and invasive)plants in four typical coastal wetlands in the core area of the Yancheng National Nature Reserve,China.The results show that the invasive S.alterniflora greatly influenced soil properties and increased soil C,N and S storage capacity:the stock(mean±standard error)of soil organic carbon(SOC,(3.56±0.36)kg/m^3),total nitrogen(TN,(0.43±0.02)kg/m^3),and total sulfur(TS,(0.69±0.11)kg/m^3)in the S.alterniflora marsh exceeded those in the adjacent bare mudflat,Suaeda salsa marsh,and Phragmites australis marsh.Because of its greater biomass,plant C((1193.7±133.6)g/m^2),N((18.8±2.4)g/m^2),and S((9.4±1.5)g/m^2)storage of S.alterniflora was also larger than those of co-occurring native plants.More biogenic elements circulated in the soil-plant system of the S.alterniflora marsh,and their spatial and temporal distribution patterns were also changed by the S.alterniflora invasion.Soil properties changed by S.alterniflora’s invasion thereby indirectly affected the accumulation of soil C,N and S in this wetland ecosystem.The SOC,TN,and TS contents were positively correlated with soil electrical conductivity and moisture,but negatively correlated with the pH and bulk density of soil.Together,these results indicate that S.alterniflora invasion altered ecosystem processes,resulted in changes in net primary production and litter decomposition,and increased the soil C,N and S storage capacity in the invaded ecosystems in comparison to those with native tallgrass communities in the coastal wetlands of East China.
基金financial support from the National Natural Science Foundation of China (Nos. 21476089, 21373091)the Provincial Science and Technology Project of Guangdong (No. 2014A030312007)
文摘Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using bagasse lignin,denoted as lignin-derived carbon(LC).By adjusting the ratio of nitrogen source and annealing temperature,we obtained the ultrathin graphitic lignin carbon(LC-4-1000)with abundant wrinkles with high surface area of 1208 m2g_1 and large pore volume of 1.40 cm3g_1.In alkaline medium,LC-4-1000 has more positive half-wave potential and nearly current density compared to commercial Pt/C for oxygen reduction reaction(ORR).More importantly,LC-4-1000 also exhibits comparable activity and superior stability for ORR in acid medium due to its high graphitic N ratio and a direct four electron pathway for ORR.This study develops a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in fuel cells.
文摘Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cholesterol-reducing and other pharmacological effects. The objective of this study was to investigate the effect of different concentrations of N (5, 10, and 20 mmol L-a, denoted by N5, N10 and N20) and S (0,5, 1, and 2 mmol L^-1, denoted by S0.5, S1 and S2) on the yield and GSs in pakchoi (Brassica campestris L. ssp. chinensis var. communis) in hydroponics. Results showed that N10 and N20 significantly enhanced the yield compared with N5, however, N20 had a negative effect relative to N10. Only with N10 and N20 low S supply (S0.5) reduced the yield. The concentrations of aliphatic GSs, aromatic GS and total GSs were enhanced by N5 and indolyl GSs were enhanced by N20. S2 enhanced the concentration of individual GS and total GSs. The concentrations of indolyl GSs were maximized in N20S2 treatment, whereas the highest concentrations of aliphatic GSs, aromatic GS and total GSs were found in N5S2 treatment. Effects of N and S on aliphatic GSs were higher than on indolyl GSs. The results suggest that the accumulation of aliphatic GSs and aromatic GS could be enhanced by low N and high S and restricted by high N while that of indolyl GSs could be enhanced by high N and high S.
基金supported by the National Key Research and Development Program of China (2016YFD0100706)the National Transgenic Key Project from the Ministry of Agriculture of China (2016ZX08002-005)
文摘The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility. The use efficiency of nitrogen, phosphorus, and potassium is controlled by complex gene networks that co-ordinate uptake, re-distribution, assimilation, and storage of these nutrients. Great progress has been made in breeding nutrient-efficient crops by molecularly engineering root traits desirable for efficient acquisition of nutrients from soil, transporters for uptake, redistribution and homeostasis of nutrients, and enzymes for efficient assimilation. Regulatory and transcription factors modulating these processes are also valuable in breeding crops with improved nutrient use efficiency and yield performance.
基金supported by the Key Program of the National Natural Science Foundation of China (31630073)the Program of the National Natural Science Foundation of China (31472116 and 31672440)+2 种基金the Program of Student Community of Professor Yang Sheng (B2016013)the Agricultural Science and Technology Innovation Program (ASTIP-IAS08)the earmarked fund for China Agriculture Research System (CARS-41)
文摘Animal agriculture contributes to environmental pollutions through the surplus nitrogen(N), phosphorus(P), and trace minerals that animals excrete. Animal nutritionists have sought alternatives to formulate more efficient diets and reduce production costs and environmental concerns. In general, element excretions may be reduced by avoiding the overfeeding of specific elements or using nutritional approaches to improve element utilizations by the animals. Several nutritional strategies are possible for minimizing N, P, and trace mineral excretions: 1) to accurately meet dietary N, P and trace mineral requirements of animals, which includes reducing the dietary crude protein contents with synthetic amino acids or feeding high rumenally undegraded protein, minimizing the adequate levels of dietary P and trace elements, adopting phase or group-feeding program, and considering the bioavailable trace mineral contents in the feed ingredients; 2) to improve the bioavailabilities of dietary N, P, and trace elements for animals by using some additives(enzymes, growth promoters, probiotics, prebiotics, vitamin D isomers, and organic acids); 3) to use highly available P sources or organic trace elements. In the future, nutrient strategies must be integrated into total production systems so that animal production systems are environmentally safe as well as economically viable.
文摘To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.
文摘The brown planthopper(BPH),Nilaparvata lugens(St?l),appeared as a devastating pest of rice in Asia. Experiments were conducted to study the effects of three nutrients,nitrogen(N),phosphorus(P) and potassium(K),on BPH and its host rice plants. Biochemical constituents of BPH and rice plants with varying nutrient levels at different growth stages,and changes in relative water content(RWC) of rice plants were determined in the laboratory. Feeding of BPH and the tolerance of rice plants to BPH with different nutrient levels were determined in the nethouse. Concentrations of N and P were found much higher in the BPH body than in its host rice plants,and this elemental mismatch is an inherent constraint on meeting nutritional requirements of BPH. Nitrogen was found as a more limiting element for BPH than other nutrients in rice plants. Application of N fertilizers to the rice plants increased the N concentrations both in rice plants and BPH while application of P and K fertilizers increased their concentrations in plant tissues only but not in BPH. Nitrogen application also increased the level of soluble proteins and decreased silicon content in rice plants,which resulted in increased feeding of BPH with sharp reduction of RWC in rice plants ultimately caused susceptible to the pest. P fertilization increased the concentration of P in rice plant tissues but not changed N,K,Si,free sugar and soluble protein contents,which indicated little importance of P to the feeding of BPH and tolerance of plant against BPH. K fertilization increased K content but reduced N,Si,free sugar and soluble protein contents in the plant tissues which resulted in the minimum reduction of RWC in rice plants after BPH feeding,thereby contributed to higher tolerance of rice plants to brown planthopper.
文摘A survey concerning the concentration of the nutrients in the Three Gorges Reservoir Area was carried out. This paper presents the parameters(NO 3 - N, NO 2 - N, Kjeldahl N, non ionic ammonia, P PO 4 and TP) determined at 16 sampling sites from 1997 to 1999 The dominant soluble nitrogen form was NO 3 - N followed by Kjeldahl N, NO 2 - N and non ionic ammonia. Mean values of NO 3 - N, NO 2 - N, Kjeldahl N and non ionic ammonia ranged from 0 50 to 2 37 mg/L, 0 022 to 0 084 mg/L, 0 33 to 0 99 mg/L and 0 007 to 0 092 mg/L respectively. Mean values of P PO 4 at most sampling sites were higher than 0 1 mg/L for subject to eutrophication. The major factors influencing the concentrations of N and P might be agricultural runoff, municipal and industrial effluents. In addition, 6 kinds of soil were sampled at the area where would inundated after the dam completed. Two approaches were adopted to simulate the N and P release from the inundated soils. The results showed that the soils would release nitrogen and phosphorus to the overlying water when the soils were inundated. The characteristics of soil affected the equilibrium concentrations of N and P between the soil and the overlying water.