Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ...Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ignored. In this study, we analyzed the stoichiometry of N, P, and S in leaves of 348 plant species in China's forests. The results show higher N content and higher molar ratios of N/P and P/S in Angiospermae than in Gymnospermae. At the family level, Ulmaceae absorbed more N and P from soils than other families, and Cupressaceae absorbed more S than other families. In addition,except for bamboo and other tropical forests, leaf N and P content of China's forests generally increased from low to middle latitudes and then slightly decreased or plateaued at high latitudes. Plant ecotypes, taxonomic groups, environmental conditions, atmospheric S precipitation, and soil-available N and P significantly affected the distribution and stoichiometry of leaf N, P, and S in China's forests.Our study indicates that China's forests are likely limited by P and S deficiencies which may increase in the future.展开更多
Growth, yield and quality of potato are greatly affected by its nutritional management. Foliar application of urea reduces nitrogen losses and increases plant nitrogen use efficiency. This study was therefore planned ...Growth, yield and quality of potato are greatly affected by its nutritional management. Foliar application of urea reduces nitrogen losses and increases plant nitrogen use efficiency. This study was therefore planned to evaluate the effect of soil applied phosphorus (DAP) and foliar application of nitrogenous fertilizer (urea) on growth, yield and quality of potato. Experiment was comprised of four different treatments of phosphorus (DAP, 46% P) and nitrogen (urea, 46% N) including a control. Treatments were T0 (DAP 160 + Urea 300 kg/acre), T1 (DAP 160 + Urea 5 kg/acre), T2 (DAP 100 + Urea 6 kg/acre) and T3 (DAP 120 + Urea 8 kg/acre). DAP fertilizer was given as basal dressing at the time of sowing. Foliar applications of nitrogenous fertilizer (urea) were given after 30 of sowing with one week interval in five split doses. Results indicated that T3 remained better regarding productivity and quality of potato. The overall fertilizer efficacy regarding yield and quality was: T3 > T2 > T1 > T0. However, Vitamin C was found maximum in T0.展开更多
Doping in Si nanocrystals is an interesting topic and directly studying the distribution of dopants in phosphorous/boron co-doping is an important issue facing the scientific community.In this study,atom probe tomogra...Doping in Si nanocrystals is an interesting topic and directly studying the distribution of dopants in phosphorous/boron co-doping is an important issue facing the scientific community.In this study,atom probe tomography is performed to study the structures and distribution of impurity in phosphorous/boron co-doped Si nanocrystals/SiO_(2) multilayers.Compared with phosphorous singly doped Si nanocrystals,it is interesting to find that the concentration of phosphorous in co-doped samples can be significantly improved.Theoretical simulation suggests that phosphorous-boron pairs are formed in co-doped Si nanocrystals with the lowest formation energy,which also reduces the formation energy of phosphorous in Si nanocrystals.The results indicate that co-doping can promote the entry of phosphorous impurities into the near-surface and inner sites of Si nanocrystals,which provides an interesting way to regulate the electronic and optical properties of Si nanocrystals such as the observed enhancement of conductivity and sub-band light emission.展开更多
The nitrogen and fluorine co doped TiO 2 polycrystalline powder was synthesized by calcinations of the hydrolysis product of tetra butyl titanate with ammonium fluoride. Nitrogen and fluorine co doping causes the abso...The nitrogen and fluorine co doped TiO 2 polycrystalline powder was synthesized by calcinations of the hydrolysis product of tetra butyl titanate with ammonium fluoride. Nitrogen and fluorine co doping causes the absorption edge of TiO 2 to shift to a lower energy region. The photocatalytic activity of co doped TiO 2 with anatase phases was found to be 2 4 times higher than that of the commercial TiO 2 photocatalyst Degussa P25 for phenol decomposition under visible light irradiation. The co doped TiO 2 powders only contain anatase phases even at 1000℃. Apparently, ammonium fluoride added retarded phase transformation of the TiO 2 powders from anatase to rutile. The substitutional fluorine and interstitial nitrogen atoms in co doped TiO 2 polycrystalline powder were responsible for the vis light response and caused the absorption edge of TiO 2 to shift to a lower energy region.展开更多
Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using...Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using bagasse lignin,denoted as lignin-derived carbon(LC).By adjusting the ratio of nitrogen source and annealing temperature,we obtained the ultrathin graphitic lignin carbon(LC-4-1000)with abundant wrinkles with high surface area of 1208 m2g_1 and large pore volume of 1.40 cm3g_1.In alkaline medium,LC-4-1000 has more positive half-wave potential and nearly current density compared to commercial Pt/C for oxygen reduction reaction(ORR).More importantly,LC-4-1000 also exhibits comparable activity and superior stability for ORR in acid medium due to its high graphitic N ratio and a direct four electron pathway for ORR.This study develops a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in fuel cells.展开更多
Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S cata...Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S catalyst exhibits higher electrocatalytic activity for oxygen reduction reaction (ORR) in alkaline electrolyte and superior durability-longer than commercial Pt/C catalyst.The enhancment of electrocatalytic activity mainly be come from the open pore structure,large specific surface area as well as the synergistic effect resulted from the co-doping of N and S atoms.In addition,the ZIF-C-N-S catalyst is also used as the air cathode catalyst in the microbial fuel cell (MFC) device.The maximum power density and stable output voltage of ZIF-C-N-S based MFC are 1315 mW/m2 and 0.48 V,respectively,which is better than that of Pt/C based MFC.展开更多
Development of efficient and promising bifunctional electrocatalysts for oxygen reduction and evolutionreactions is desirable. Herein, cobalt nanoparticles embedded in nitrogen and sulfur co-doped carbonnanotubes(Co@N...Development of efficient and promising bifunctional electrocatalysts for oxygen reduction and evolutionreactions is desirable. Herein, cobalt nanoparticles embedded in nitrogen and sulfur co-doped carbonnanotubes(Co@NSCNT) were prepared by a facile pyrolytic treatment. The cobalt nanoparticles and co-doping of nitrogen and sulfur can improve the electron donor-acceptor characteristics of the carbon nan-otubes and provide more active sites for catalytic oxygen reduction and evolution reactions. The preparedCo@NSCNT, annealed at 900℃, showed excellent electrocatalytic performance and better durability thancommercial platinum catalysts. Additionally, Co@NSCNT-900 catalysts exhibited comparable onset poten-tials and Tafel slopes to ruthenium oxide. Overall, Co@NSCNT showed high activity and improved dura-bility for both oxygen evolution and reduction reactions.展开更多
Lanthanum and nitrogen co-doped SrTiO_3 was prepared by a mechanochemical reaction using SrTiO_3, urea and La_2O_3 as the raw materials. The samples were characterized by X-ray diffraction, X-ray photoelectron spectro...Lanthanum and nitrogen co-doped SrTiO_3 was prepared by a mechanochemical reaction using SrTiO_3, urea and La_2O_3 as the raw materials. The samples were characterized by X-ray diffraction, X-ray photoelectron spectrometer, transmission electron microscopy, and nitrogen adsorption-desorption isotherm measurements. Lanthanum doping could increase the doping content of nitrogen in the sample. The sample prepared with 0.2 mol% La_2O_3, 22 mol% urea and 77.8 mol% SrTiO_3 by mechanochemical reaction, which has nearly the same nitrogen and lanthanum doping fractions, exhibited high photocatalytic activities. Under the irradiation of light with wavelength larger than 400, and 290 nm, the photocatalytic activity of nitrogen and lanthanum co-doped SrTiO_3 were 2.6 and 2 times greater than that of pure SrTiO_3.展开更多
Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to i...Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to its low solubility in aqueous electrolytes.Herein,we propose phosphorus-activated Cu electrocatalysts to generate electron-deficient Cu sites on the catalyst surface to promote the adsorption of N_(2) molecules.The eNRR system is further modified using a gas diffusion electrode(GDE) coated with polytetrafluoroethylene(PTFE) to form an effective three-phase boundary of liquid water-gas N_(2)-solid catalyst to facilitate easy access of N_(2) to the catalytic sites.As a result,the new catalyst in the flow-type cell records a Faradaic efficiency of 13.15% and an NH_(3) production rate of 7.69 μg h^(-1) cm^(-2) at-0.2 V_(RHE),which represent 3.56 and 59.2 times increases from those obtained with a pristine Cu electrode in a typical electrolytic cell.This work represents a successful demonstration of dual modification strategies;catalyst modification and N_(2) supplying system engineering,and the results would provide a useful platform for further developments of electrocatalysts and reaction systems.展开更多
Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsor...Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsorption, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and temperature-programmed desorption were used to characterize the as-prepared catalyst. The results showed that plasma treatment cannot change the morphology of the as-prepared catalyst but introduces nitrogen vacancies and sulfur into g-C3N4 lattice simultaneously. The as-prepared co-doped g-C3N4 displays an ammonium ion production rate as high as 6.2 mg·L^-1·h^-1·gcat^-1, which is 2.3 and 25.8 times higher than that of individual N-vacancy-doped g-C3N4 and neat g-C3N4, respectively, as well as showing good catalytic stability. Experimental and density functional theory calculation results indicate that, compared with individual N vacancy doping, the introduction of sulfur can promote the activation ability of N vacancies to N2 molecules, leading to promoted N2 photofixation performance.展开更多
Green light-emitting Ba2SiO4:Eu^2+ phosphors co-doped with La or Y were synthesized by conventional solid-state reaction technique in reductive atmosphere(a mixture of 5% H2 and 95% N2).The results showed that the...Green light-emitting Ba2SiO4:Eu^2+ phosphors co-doped with La or Y were synthesized by conventional solid-state reaction technique in reductive atmosphere(a mixture of 5% H2 and 95% N2).The results showed that the co-doping of La and Y could greatly enhance the fluorescence intensity of Ba2SiO4:Eu2+ phosphors.The optimum doping concentration expressed by the x value in(Ba0.985-1.5xREx)2SiO4:0.03Eu^2+(RE=La or Y) was determined to be of 0.05.The excitation and emission peaks of all as-synthesized phosphors were wide bands.The excitation bands ranged from 250 to 400 nm, which matched well with the wavelength of near ultraviolet white light-emitting diodes(LED) chip and could be used as a potential candidate for the fabrication of white LED.The emission bands from 450 to 550 nm were typical 5d-4f transition emission of Eu^2+ and displayed un-symmetry profiles because of the two substitution sites of Ba^2+ with Eu^2+.展开更多
Regulation with nitrogen and oxygen co-doping on growth and properties of boron doped diamond films is studied by using laughing gas as dopant. As the concentration of laughing gas(N2O/C) increases from 0 to 10%, the ...Regulation with nitrogen and oxygen co-doping on growth and properties of boron doped diamond films is studied by using laughing gas as dopant. As the concentration of laughing gas(N2O/C) increases from 0 to 10%, the growth rate of diamond film decreases gradually, and the nitrogen-vacancy(NV) center luminescence intensity increases first and then weakens. The results show that oxygen in laughing gas has a strong inhibitory effect on formation of NV centers, and the inhibitory effect would be stronger as the concentration of laughing gas increases. As a result, the film growth rate and nitrogen-related compensation donor decrease, beneficial to increase the acceptor concentration(~3.2×10^(19)cm^(-3)) in the film. Moreover, it is found that the optimal regulation with the quality and electrical properties of boron doped diamond films could be realized by adding appropriate laughing gas, especially the hole mobility(~700cm^(2)/V·s), which is beneficial to the realization of high-quality boron doped diamond films and high-level optoelectronic device applications in the future.展开更多
Silicon(Si)is a promising anode candidate for next-generation lithium-ion batteries(LIBs),but it suffers from poor electronic conductivity and dramatic volume variation during cycling,which poses a critical challenge ...Silicon(Si)is a promising anode candidate for next-generation lithium-ion batteries(LIBs),but it suffers from poor electronic conductivity and dramatic volume variation during cycling,which poses a critical challenge for stable battery operation.To mitigate these issues simultaneously,we propose a"double carbon synergistic encapsulation"strategy,namely thin carbon shell and nitrogen/phosphorus co-doped two-dimensional(2D)carbon sheet dual encapsulate Si nanoparticles(denoted as 2D NPC/C@Si).This double carbon structure can serve as a conductive medium and buffer matrix to accommodate the volume expansion of Si nanoparticles and enable fast electron/ion transport,which promotes the formation of a stable solid electrolyte interphase film during cycling.Through structural advantages,the resulting 2 D NPC/C@Si electrode demonstrates a high reversible capacity of592 mAh·g^(-1) at 0.2 A·g^(-1) with 90.5%excellent capacity retention after 100 cycles,outstanding rate capability(148 mAh·g^(-1) at 8 A·g^(-1)),and superior long-term cycling stability(326 mAh·g^(-1) at 1 A·g^(-1) for 500 cycles,86%capacity retention).Our findings elucidate the development of high-performance Si@C composite anodes for advanced LTBs.展开更多
The convenient synthesis of the composite electrode with high supercapacitance performance plays an important role in practical application but is challenging.Herein,the carbon nanotubes(CNTs)coupled with lowcrystalli...The convenient synthesis of the composite electrode with high supercapacitance performance plays an important role in practical application but is challenging.Herein,the carbon nanotubes(CNTs)coupled with lowcrystalline sulfur and nitrogen co-doped Ni Co-LDH(denoted as SN-Ni Co-LDH)nanosheets array are grown on Ni Co foam(NCF)substrate by two convenient steps of metal induced self-assembly and corrosion engineering,which present the advantages of operating at roomtemperature and low preparation costs.Benefiting from the S–N co-doping and low-crystallinity of Ni Co-LDH,the prepared SN-Ni Co-LDH@CNTs@NCF electrode presents a topping charge capacity of 2470 C·g^(-1)(4.94 C·cm^(-2))at 5 m A·cm^(-2).Furthermore,the fabricated asymmetry supercapacitor(ASC)achieves an extraordinary energy density of 77 Wh·kg^(-1)(0.617 m Wh·cm^(-2))at a power density of 438 W·kg^(-1)(3.5 m W·cm^(-2))and outstanding stability(91%capacity retention after 5000 cycles at20 m A·cm^(-2)).Impressively,the structure evolution of Ni Co-LDH during the charge/discharge processes has been thoroughly elucidated by in-situ Raman spectra.Therefore,this work verifies a powerful strategy and practical value for preparing composite electrodes with high supercapacitance performance,and also provides guidance for the rational design of the smart electrodes.展开更多
A novel composite photocatalyst for photocatalytic decomposition of water for hydrogen evolution was successfully synthesized by in-situ growth of nitrogen and sulfur co-doped coal-based carbon quantum dots(NSCQDs)nan...A novel composite photocatalyst for photocatalytic decomposition of water for hydrogen evolution was successfully synthesized by in-situ growth of nitrogen and sulfur co-doped coal-based carbon quantum dots(NSCQDs)nanoparticles on the surface of sheet cobalt-based metal-organic framework(Co-MOF)and graphitic carbon nitride(g-C_(3)N_(4),CN).The structure and properties of the obtained catalysts were systematically analyzed.NSCQDs effectively broaden the absorption of Co-MOF and CN in the visible region.The new composite photocatalyst has high hydrogen production activity and the hydrogen production rate reaches 6254μmol/(g·h)at pH=9.At the same time,NSCQDs synergy Co-MOF/CN composites have good stability.After four cycles of hydrogen production,the performance remains relatively stable.The tran sient photocurrent response and Nyquist plot experimental results further demonstrate the improvement of carrier separation efficiency in composite catalysts.The semiconductor type(n-type semico nductor)of the single-phase catalyst was determined by the Mott-Schottky test,and the band structure was analyzed.The conductive and valence bands of CN are-0.99 and 1.72 eV,respectively,and the conduction and valence bands of Co-MOF are-1.85 and 1.33 eV,respectively.Th e mechanism of the photocatalytic reaction can be inferred,that is,Z-type heterojunction is formed between CN an d Co-MOF,and NSCQDs was used as cocatalyst.展开更多
基金support from the National Natural Science Foundation of China(41522207,41571130042)the State’s Key Project of Research and Development Plan of China(2016YFA0601002)
文摘Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ignored. In this study, we analyzed the stoichiometry of N, P, and S in leaves of 348 plant species in China's forests. The results show higher N content and higher molar ratios of N/P and P/S in Angiospermae than in Gymnospermae. At the family level, Ulmaceae absorbed more N and P from soils than other families, and Cupressaceae absorbed more S than other families. In addition,except for bamboo and other tropical forests, leaf N and P content of China's forests generally increased from low to middle latitudes and then slightly decreased or plateaued at high latitudes. Plant ecotypes, taxonomic groups, environmental conditions, atmospheric S precipitation, and soil-available N and P significantly affected the distribution and stoichiometry of leaf N, P, and S in China's forests.Our study indicates that China's forests are likely limited by P and S deficiencies which may increase in the future.
文摘Growth, yield and quality of potato are greatly affected by its nutritional management. Foliar application of urea reduces nitrogen losses and increases plant nitrogen use efficiency. This study was therefore planned to evaluate the effect of soil applied phosphorus (DAP) and foliar application of nitrogenous fertilizer (urea) on growth, yield and quality of potato. Experiment was comprised of four different treatments of phosphorus (DAP, 46% P) and nitrogen (urea, 46% N) including a control. Treatments were T0 (DAP 160 + Urea 300 kg/acre), T1 (DAP 160 + Urea 5 kg/acre), T2 (DAP 100 + Urea 6 kg/acre) and T3 (DAP 120 + Urea 8 kg/acre). DAP fertilizer was given as basal dressing at the time of sowing. Foliar applications of nitrogenous fertilizer (urea) were given after 30 of sowing with one week interval in five split doses. Results indicated that T3 remained better regarding productivity and quality of potato. The overall fertilizer efficacy regarding yield and quality was: T3 > T2 > T1 > T0. However, Vitamin C was found maximum in T0.
基金Project supported by the National Key Research and Development Program of China (Grant No.2018YFB2200101)the National Natural Science Foundation of China (Grant Nos.62004078 and 61921005)+4 种基金Natural Science Foundation of Jiangsu Province (Grant No.BK20201073)Natural Science Foundation of Ningbo (Grant No.2021J068)ANR DONNA (Grant No.ANR-18-CE09-0034)Leading Innovative and Entrepreneur Team Introduction Program of Hangzhou (Grant No.TD2022012)partially supported by the CNRS Federation IRMA-FR 3095。
文摘Doping in Si nanocrystals is an interesting topic and directly studying the distribution of dopants in phosphorous/boron co-doping is an important issue facing the scientific community.In this study,atom probe tomography is performed to study the structures and distribution of impurity in phosphorous/boron co-doped Si nanocrystals/SiO_(2) multilayers.Compared with phosphorous singly doped Si nanocrystals,it is interesting to find that the concentration of phosphorous in co-doped samples can be significantly improved.Theoretical simulation suggests that phosphorous-boron pairs are formed in co-doped Si nanocrystals with the lowest formation energy,which also reduces the formation energy of phosphorous in Si nanocrystals.The results indicate that co-doping can promote the entry of phosphorous impurities into the near-surface and inner sites of Si nanocrystals,which provides an interesting way to regulate the electronic and optical properties of Si nanocrystals such as the observed enhancement of conductivity and sub-band light emission.
文摘The nitrogen and fluorine co doped TiO 2 polycrystalline powder was synthesized by calcinations of the hydrolysis product of tetra butyl titanate with ammonium fluoride. Nitrogen and fluorine co doping causes the absorption edge of TiO 2 to shift to a lower energy region. The photocatalytic activity of co doped TiO 2 with anatase phases was found to be 2 4 times higher than that of the commercial TiO 2 photocatalyst Degussa P25 for phenol decomposition under visible light irradiation. The co doped TiO 2 powders only contain anatase phases even at 1000℃. Apparently, ammonium fluoride added retarded phase transformation of the TiO 2 powders from anatase to rutile. The substitutional fluorine and interstitial nitrogen atoms in co doped TiO 2 polycrystalline powder were responsible for the vis light response and caused the absorption edge of TiO 2 to shift to a lower energy region.
基金financial support from the National Natural Science Foundation of China (Nos. 21476089, 21373091)the Provincial Science and Technology Project of Guangdong (No. 2014A030312007)
文摘Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using bagasse lignin,denoted as lignin-derived carbon(LC).By adjusting the ratio of nitrogen source and annealing temperature,we obtained the ultrathin graphitic lignin carbon(LC-4-1000)with abundant wrinkles with high surface area of 1208 m2g_1 and large pore volume of 1.40 cm3g_1.In alkaline medium,LC-4-1000 has more positive half-wave potential and nearly current density compared to commercial Pt/C for oxygen reduction reaction(ORR).More importantly,LC-4-1000 also exhibits comparable activity and superior stability for ORR in acid medium due to its high graphitic N ratio and a direct four electron pathway for ORR.This study develops a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in fuel cells.
基金the National Natural Science Foundation of China(No.51472034)the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices,Ministry of Education,Jianghan University(No.JDGD-201806)。
文摘Nitrogen and sulfur co-doped porous nanocarbon (ZIF-C-N-S) catalyst was successfully synthesized derived from ZIF-8 and thiourea precursors.The electrochemical measurements indicate that the as-obtained ZIF-C-N-S catalyst exhibits higher electrocatalytic activity for oxygen reduction reaction (ORR) in alkaline electrolyte and superior durability-longer than commercial Pt/C catalyst.The enhancment of electrocatalytic activity mainly be come from the open pore structure,large specific surface area as well as the synergistic effect resulted from the co-doping of N and S atoms.In addition,the ZIF-C-N-S catalyst is also used as the air cathode catalyst in the microbial fuel cell (MFC) device.The maximum power density and stable output voltage of ZIF-C-N-S based MFC are 1315 mW/m2 and 0.48 V,respectively,which is better than that of Pt/C based MFC.
基金supported by the Human Resources Development(No.20184030202070) of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy
文摘Development of efficient and promising bifunctional electrocatalysts for oxygen reduction and evolutionreactions is desirable. Herein, cobalt nanoparticles embedded in nitrogen and sulfur co-doped carbonnanotubes(Co@NSCNT) were prepared by a facile pyrolytic treatment. The cobalt nanoparticles and co-doping of nitrogen and sulfur can improve the electron donor-acceptor characteristics of the carbon nan-otubes and provide more active sites for catalytic oxygen reduction and evolution reactions. The preparedCo@NSCNT, annealed at 900℃, showed excellent electrocatalytic performance and better durability thancommercial platinum catalysts. Additionally, Co@NSCNT-900 catalysts exhibited comparable onset poten-tials and Tafel slopes to ruthenium oxide. Overall, Co@NSCNT showed high activity and improved dura-bility for both oxygen evolution and reduction reactions.
文摘Lanthanum and nitrogen co-doped SrTiO_3 was prepared by a mechanochemical reaction using SrTiO_3, urea and La_2O_3 as the raw materials. The samples were characterized by X-ray diffraction, X-ray photoelectron spectrometer, transmission electron microscopy, and nitrogen adsorption-desorption isotherm measurements. Lanthanum doping could increase the doping content of nitrogen in the sample. The sample prepared with 0.2 mol% La_2O_3, 22 mol% urea and 77.8 mol% SrTiO_3 by mechanochemical reaction, which has nearly the same nitrogen and lanthanum doping fractions, exhibited high photocatalytic activities. Under the irradiation of light with wavelength larger than 400, and 290 nm, the photocatalytic activity of nitrogen and lanthanum co-doped SrTiO_3 were 2.6 and 2 times greater than that of pure SrTiO_3.
基金supported by the Climate Change Response Project (NRF-2019M1A2A2065612)the Brainlink Project (NRF2022H1D3A3A01081140)+3 种基金the NRF-2021R1A4A3027878 and the No. RS-2023-00212273 funded by the Ministry of Science and ICT of Korea via National Research Foundationresearch funds from Hanhwa Solutions Chemicals (1.220029.01)UNIST (1.190013.01)supported by the Institute for Basic Science (IBS-R019-D1)。
文摘Electrochemical N_(2) reduction reaction(eNRR) over Cu-based catalysts suffers from an intrinsically low activity of Cu for activation of stable N_(2) molecules and the limited supply of N_(2) to the catalyst due to its low solubility in aqueous electrolytes.Herein,we propose phosphorus-activated Cu electrocatalysts to generate electron-deficient Cu sites on the catalyst surface to promote the adsorption of N_(2) molecules.The eNRR system is further modified using a gas diffusion electrode(GDE) coated with polytetrafluoroethylene(PTFE) to form an effective three-phase boundary of liquid water-gas N_(2)-solid catalyst to facilitate easy access of N_(2) to the catalytic sites.As a result,the new catalyst in the flow-type cell records a Faradaic efficiency of 13.15% and an NH_(3) production rate of 7.69 μg h^(-1) cm^(-2) at-0.2 V_(RHE),which represent 3.56 and 59.2 times increases from those obtained with a pristine Cu electrode in a typical electrolytic cell.This work represents a successful demonstration of dual modification strategies;catalyst modification and N_(2) supplying system engineering,and the results would provide a useful platform for further developments of electrocatalysts and reaction systems.
基金supported by the National Natural Science Foundation of China(41701364)the Liaoning Doctoral Priming Fund Project(201601333,20170520109)+2 种基金the Basic Scientific Research in Colleges and Universities in Heilongjiang Province(KJCXZD201715)the Harbin Science and Technology Bureau Project(2017RAQXJ145)supported by Super Computing Center of Dalian University of Technology~~
文摘Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsorption, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and temperature-programmed desorption were used to characterize the as-prepared catalyst. The results showed that plasma treatment cannot change the morphology of the as-prepared catalyst but introduces nitrogen vacancies and sulfur into g-C3N4 lattice simultaneously. The as-prepared co-doped g-C3N4 displays an ammonium ion production rate as high as 6.2 mg·L^-1·h^-1·gcat^-1, which is 2.3 and 25.8 times higher than that of individual N-vacancy-doped g-C3N4 and neat g-C3N4, respectively, as well as showing good catalytic stability. Experimental and density functional theory calculation results indicate that, compared with individual N vacancy doping, the introduction of sulfur can promote the activation ability of N vacancies to N2 molecules, leading to promoted N2 photofixation performance.
基金Program for Changjiang Scholars and Innovative Research Team in University (IRT0730)the Key Project of Department of Science and Technology of Jiangxi ProvinceProject of Education Department of Jiangxi
文摘Green light-emitting Ba2SiO4:Eu^2+ phosphors co-doped with La or Y were synthesized by conventional solid-state reaction technique in reductive atmosphere(a mixture of 5% H2 and 95% N2).The results showed that the co-doping of La and Y could greatly enhance the fluorescence intensity of Ba2SiO4:Eu2+ phosphors.The optimum doping concentration expressed by the x value in(Ba0.985-1.5xREx)2SiO4:0.03Eu^2+(RE=La or Y) was determined to be of 0.05.The excitation and emission peaks of all as-synthesized phosphors were wide bands.The excitation bands ranged from 250 to 400 nm, which matched well with the wavelength of near ultraviolet white light-emitting diodes(LED) chip and could be used as a potential candidate for the fabrication of white LED.The emission bands from 450 to 550 nm were typical 5d-4f transition emission of Eu^2+ and displayed un-symmetry profiles because of the two substitution sites of Ba^2+ with Eu^2+.
基金Project supported by the National Key R&D Program of China (Grant Nos. 2018YFB0406502, 2017YFF0210800, and 2017YFB0403003)the National Natural Science Foundation of China (Grant Nos. 61974059, 61674077, and 61774081)+1 种基金the Natural Science Foundation of Jiangsu Province (Grant No. BK20160065)the Fundamental Research Funds for the Central Universities。
文摘Regulation with nitrogen and oxygen co-doping on growth and properties of boron doped diamond films is studied by using laughing gas as dopant. As the concentration of laughing gas(N2O/C) increases from 0 to 10%, the growth rate of diamond film decreases gradually, and the nitrogen-vacancy(NV) center luminescence intensity increases first and then weakens. The results show that oxygen in laughing gas has a strong inhibitory effect on formation of NV centers, and the inhibitory effect would be stronger as the concentration of laughing gas increases. As a result, the film growth rate and nitrogen-related compensation donor decrease, beneficial to increase the acceptor concentration(~3.2×10^(19)cm^(-3)) in the film. Moreover, it is found that the optimal regulation with the quality and electrical properties of boron doped diamond films could be realized by adding appropriate laughing gas, especially the hole mobility(~700cm^(2)/V·s), which is beneficial to the realization of high-quality boron doped diamond films and high-level optoelectronic device applications in the future.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52072323,21805278 and 51872098)the Leading Project Foundation of Science Department of Fujian Province(No.2018H0034)+2 种基金the“Double-First Class”Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen Universitythe Opening Project of National Joint Engineering Research Center for Abrasion Control and Molding of Metal MaterialsHenan Key Laboratory of High-temperature Structural and Functional Materials,Henan University of Science and Technology(No.HKDNM2019013)。
文摘Silicon(Si)is a promising anode candidate for next-generation lithium-ion batteries(LIBs),but it suffers from poor electronic conductivity and dramatic volume variation during cycling,which poses a critical challenge for stable battery operation.To mitigate these issues simultaneously,we propose a"double carbon synergistic encapsulation"strategy,namely thin carbon shell and nitrogen/phosphorus co-doped two-dimensional(2D)carbon sheet dual encapsulate Si nanoparticles(denoted as 2D NPC/C@Si).This double carbon structure can serve as a conductive medium and buffer matrix to accommodate the volume expansion of Si nanoparticles and enable fast electron/ion transport,which promotes the formation of a stable solid electrolyte interphase film during cycling.Through structural advantages,the resulting 2 D NPC/C@Si electrode demonstrates a high reversible capacity of592 mAh·g^(-1) at 0.2 A·g^(-1) with 90.5%excellent capacity retention after 100 cycles,outstanding rate capability(148 mAh·g^(-1) at 8 A·g^(-1)),and superior long-term cycling stability(326 mAh·g^(-1) at 1 A·g^(-1) for 500 cycles,86%capacity retention).Our findings elucidate the development of high-performance Si@C composite anodes for advanced LTBs.
基金supported by the National Natural Science Foundation of China(Nos.21978111,22278175 and 22108094)Zhejiang Provincial Natural Science Foundation of China(Nos.LZ24B060001 and LY22E020016)+1 种基金Jiaxing Key Research Project(No.2022BZ10001)the“Innovation Jiaxing·Excellent Talent Support Plan”Top Talent for Innovation and Entrepreneurship。
文摘The convenient synthesis of the composite electrode with high supercapacitance performance plays an important role in practical application but is challenging.Herein,the carbon nanotubes(CNTs)coupled with lowcrystalline sulfur and nitrogen co-doped Ni Co-LDH(denoted as SN-Ni Co-LDH)nanosheets array are grown on Ni Co foam(NCF)substrate by two convenient steps of metal induced self-assembly and corrosion engineering,which present the advantages of operating at roomtemperature and low preparation costs.Benefiting from the S–N co-doping and low-crystallinity of Ni Co-LDH,the prepared SN-Ni Co-LDH@CNTs@NCF electrode presents a topping charge capacity of 2470 C·g^(-1)(4.94 C·cm^(-2))at 5 m A·cm^(-2).Furthermore,the fabricated asymmetry supercapacitor(ASC)achieves an extraordinary energy density of 77 Wh·kg^(-1)(0.617 m Wh·cm^(-2))at a power density of 438 W·kg^(-1)(3.5 m W·cm^(-2))and outstanding stability(91%capacity retention after 5000 cycles at20 m A·cm^(-2)).Impressively,the structure evolution of Ni Co-LDH during the charge/discharge processes has been thoroughly elucidated by in-situ Raman spectra.Therefore,this work verifies a powerful strategy and practical value for preparing composite electrodes with high supercapacitance performance,and also provides guidance for the rational design of the smart electrodes.
基金Project supported by the Ningxia Natural Science Foundation of China(2023AAC03285)National Natural Science Foundation of China(21666001)+1 种基金Innovative Team for Transforming Waste Cooking Oil into Clean Energy and High Value-added Chemicals,ChinaNingxia Low-grade Resource High Value Utilization and Environmental Chemical Integration Technology Innovation Team Project,China。
文摘A novel composite photocatalyst for photocatalytic decomposition of water for hydrogen evolution was successfully synthesized by in-situ growth of nitrogen and sulfur co-doped coal-based carbon quantum dots(NSCQDs)nanoparticles on the surface of sheet cobalt-based metal-organic framework(Co-MOF)and graphitic carbon nitride(g-C_(3)N_(4),CN).The structure and properties of the obtained catalysts were systematically analyzed.NSCQDs effectively broaden the absorption of Co-MOF and CN in the visible region.The new composite photocatalyst has high hydrogen production activity and the hydrogen production rate reaches 6254μmol/(g·h)at pH=9.At the same time,NSCQDs synergy Co-MOF/CN composites have good stability.After four cycles of hydrogen production,the performance remains relatively stable.The tran sient photocurrent response and Nyquist plot experimental results further demonstrate the improvement of carrier separation efficiency in composite catalysts.The semiconductor type(n-type semico nductor)of the single-phase catalyst was determined by the Mott-Schottky test,and the band structure was analyzed.The conductive and valence bands of CN are-0.99 and 1.72 eV,respectively,and the conduction and valence bands of Co-MOF are-1.85 and 1.33 eV,respectively.Th e mechanism of the photocatalytic reaction can be inferred,that is,Z-type heterojunction is formed between CN an d Co-MOF,and NSCQDs was used as cocatalyst.