期刊文献+
共找到1,327篇文章
< 1 2 67 >
每页显示 20 50 100
Effects of Zinc on the Yield,Uptake and Distribution of Nitrogen/Phosphorus/Potassium/Zinc in Different Genotypes of Maize 被引量:8
1
作者 李佐同 杨克军 王玉凤 《Agricultural Science & Technology》 CAS 2010年第3期72-75,86,共5页
[Objective] To study the effects of Zinc on the yield,nitrogen/phosphorus/potassium/Zinc uptake and distribution of different genotypes of maize.[Method] Using two different genotypes of maize as materials,the effects... [Objective] To study the effects of Zinc on the yield,nitrogen/phosphorus/potassium/Zinc uptake and distribution of different genotypes of maize.[Method] Using two different genotypes of maize as materials,the effects of Zn on the yield,N/P/K /Zn uptake and distribution of different genotypes of maize were studied by pot cultivation.[Result] Appropriate Zn supply could improve the grain number per kernel.The Zn content in different organs of maize showed little difference under low Zn treatment (Zn0,Zn1).With the increase of Zn supply,Zn content in leaf,stem and sheath rapidly increased,but the increasing amplitude of Zn content in the kernel and bract were less.The excessive Zn in maize was mainly translocated in lower organs to reduce the damage of them to plants.Different Zn supply levels had less effects on the absorption and translocation of N,P and K in low-Zn insensitive variety Mudan 9.While the absorption and translation of N,P,K in low Zn sensitive variety (Sidan 19) was more easily influenced by the amount of Zn supplied.[Conclusion] Appropriate Zn supply could enhance the maize yield and utilization rate of N and K,and reduce the absorption and utilization of P. 展开更多
关键词 Zn MAIZE Genotype YIELD nitrogen phosphorus POTASSIUM
下载PDF
Growth and Phosphorus Uptake of Oat (Avena nuda L.) as Affected by Mineral Nitrogen Forms Supplied in Hydroponics and Soil Culture 被引量:3
2
作者 FAN Ming-Shou LI Zhen +1 位作者 WANG Feng-Mei ZHANG Jian-Hua 《Pedosphere》 SCIE CAS CSCD 2009年第3期323-330,共8页
Plants show different growth responses to N sources supplied with either NH4^+ or NO3^-. The uptake of different N sources also affects the rhizosphere pH and therefore the bioavallability of soil phosphorus, particu... Plants show different growth responses to N sources supplied with either NH4^+ or NO3^-. The uptake of different N sources also affects the rhizosphere pH and therefore the bioavallability of soil phosphorus, particularly in alkaline soils. The plant growth, P uptake, and P availability in the rhizosphere of oat (Arena nuda L.) grown in hydroponics and in soil culture were investigated under supply with sole NH4^+-N, sole NO3-N, or a combination. Sole NO^- -fed oat plants accumulated more biomass than sole NH4^+ -fed ones. The highest biomass accumulation was observed when N was supplied with both NH^+ -N and NO3^- -N. Growth of the plant root increased with the proportion of NO3^- in the cultural medium. Better root growth and higher root/shoot ratio were consistently observed in NO3^- fed plants. However, root vigor was the highest when N was supplied with NO3^- +NH4^+. NH4^+ supply reduced the rhizosphere pH but did not affect P uptake by plants grown in soils with CaHPO4 added as P source. No P deficiency was observed, and plant P concentrations were generally above 2 g kg^-1. P uptake was increased when N was supplied partly or solely as NO3^--N, similarly as biomass accumulation. The results suggested that oat was an NO3-preferring plant, and NO3^- -N was essential for plant growth and the maintenance of root absorption capacity. N supply with NH4^+ -N did not improve P nutrition, which was most likely due to the absence of P deficiency. 展开更多
关键词 alkaline soils nitrogen nutrition oat (Arena nuda L.) P uptake rhizosphere pH
下载PDF
Difference of Nitrogen Uptake and Use Efficiency in Conventional Indica Rice Cultivars with Different Nitrogen Use Efficiency for Grain Output 被引量:3
3
作者 周娟 李进前 +4 位作者 张彪 张传胜 张岳芳 王余龙 董桂春 《Agricultural Science & Technology》 CAS 2008年第6期68-73,141,共7页
[Objective] The study aimed to confirm difference of nitrogen uptake and used efficiency with different nitrogen use efficiency for grain output (NUEg) types of indica rice.[Method] 88 and 122 conventional indica rice... [Objective] The study aimed to confirm difference of nitrogen uptake and used efficiency with different nitrogen use efficiency for grain output (NUEg) types of indica rice.[Method] 88 and 122 conventional indica rice cultivars were solution-cultured in 2001 and 2002, respectively. Dry matter weight (including root system, culm and sheath, leaves, panicle), nitrogen content of different organs, yield and its components were measured. The tested rice cultivars were classified into 6 types (i.e. A, B, C, D, E and F, A was the lowest, and F was the highest) based on their NUEg level by the MinSSw method.[Result](1)Difference of NUEg of the cultivars used in this study were very large; (2) No significant difference of N content at heading stage was observed among different NUEg types of indica rice. In the cultivars with higher NUEg, however, N content in leaf, stem-sheath and entire rice plant were lower at mature stage. (3)Cultivars with higher NUEg were characterized with lower N uptake before heading and at mature stage; (4) Cultivars with higher NUEg were characterized with higher N use efficiency in biomass production and harvest index. [Conclusion] The cultivars with higher NUEg showed lower N uptake and N content, while nitrogen use efficiency was higher. 展开更多
关键词 Conventional INDICA rice CULTIVARS nitrogen content for grain output nitrogen uptake nitrogen use efficiency
下载PDF
Nitrogen and Phosphorus Fertilization Promotes Aerial Part Development and Affect Nutrient Uptake by Carobinha of the Brazilian Cerrado
4
作者 Willian Vieira Goncalves Maria do Carmo Vieira +3 位作者 Thiago de Oliveira Carnevali Néstor A.Heredia Zarate Heldo Denir Vhaldor Rosa Aran Katia Cristina Silva Mineli 《American Journal of Plant Sciences》 2017年第13期3377-3398,共22页
Producing Brazilian Cerrado plants, especially ones endangered, is essential for your maintenance. In this way, fertilization is furthermore uncertain. Here, we demonstrate the impact of soil addition of nitrogen (N, ... Producing Brazilian Cerrado plants, especially ones endangered, is essential for your maintenance. In this way, fertilization is furthermore uncertain. Here, we demonstrate the impact of soil addition of nitrogen (N, 4.20, 18.90, 31.50, 44.10 and 59.85 mg&middot;dm-3) and phosphorus (P, 9.56, 57.38, 95.62, 133.86 and 181.67 mg&middot;dm-3) fertilizers levels on the development and on nutrients uptake by Jacaranda decurrens subsp. symmetrifoliolata (carobinha), species of the Brazilian Cerrado, in a long term pot trial. The N and P addition together increased plant height and N concentration in roots. N and P also increased the P concentration and content on the roots in young plants, but in the older plants, isolated effect of both was stronger than their combined action. The N addition promoted branching, production of dry leaves and dry xylopodium, contents of K, Ca and P on the leaves, and N content on the roots. However, the N reduced xylopodium diameter, leaf area, and Mg contents in the young plants, but increased them in the older plants. The P addition increased stem diameter and dry biomass, P concentration and N content on the leaves, Ca content on the roots and also reduced N concentration on the leaves. However, the P addition increased Mg concentration on the roots in the young plants and reduced it in the older plants. In general, N levels ranging between 25.69 - 38.85 mg&middot;dm-3 and P levels between 84.39 - 109.23 mg&middot;dm-3 promote more effectively the plant development. Thus, N and P fertilization can promote the aerial development of plant and a differential allocation of nutrients between the carobinha tissues. 展开更多
关键词 Jacaranda decurrens Sub sp.symmetrifoliolata BIGNONIACEAE nitrogen Management phosphorus Management
下载PDF
Variation of Nitrogen Uptake and Utilization Efficiency of Mid-Season Hybrid Rice at Different Ecological Sites under Different Nitrogen Application Levels 被引量:3
5
作者 徐富贤 熊洪 +4 位作者 张林 郭晓艺 朱永川 周兴兵 刘茂 《Agricultural Science & Technology》 CAS 2011年第7期1001-1009,1012,共10页
[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and ut... [Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and utilization efficiency for mid-season hybrid rice.[Method] By using mid-season rice varieties II-you 7 and Yuxiangyou203 as the experimental materials,field experiment was conducted at seven ecological sites in four provinces or cities in Southwestern China in 2009.A total of four nitrogen application levels were set as follows:by using 75 kg/hm2 of P2O5 and 75 kg/hm2 of K2O as the base fertilizer,extra 0,90,150 and 210 kg/hm2 of nitrogen fertilizer(in which,base fertilizer,base-tillering fertilizer and base-earing fertilizer respectively accounted for 60%,20% and 20%.) was applied,respectively.In the split-plot design,fertilizer was considered as the main factor while rice variety was taken as the secondary factor.A total of eight treatments were set with three replications.[Result] Highly significant differences of grain yield were found among seven locations,two varieties,four nitrogen application levels,interactions of site × variety and site × nitrogen application level,but the interaction of variety ×nitrogen application level had no significant influence on rice yield.There were highly significant effects of site,varieties and nitrogen application level on dry matter production,nitrogen content,nitrogen utilization efficiency.Highly significant negative correlations between uptake efficiency and utilization efficiency for nitrogen were found;and multiple stepwise regression analysis showed that nitrogen uptake-utilization efficiency were significantly influenced by different ecological sites,chemical quality of soil and the levels of nitrogen application.[Conclusion] The research will provide theoretical and practical basis for the highly efficient application of nitrogen in mid-season hybrid rice cultivation. 展开更多
关键词 Mid-season hybrid rice Ecological site Soil chemical characteristics nitrogen application level nitrogen uptake and utilization efficiency
下载PDF
Effect of Transplanting Density on Rice Yield,Nitrogen Uptake and ^(15)N-fertilizer Fate 被引量:5
6
作者 樊红柱 张鸿 +2 位作者 冯文强 张冀 王昌桃 《Agricultural Science & Technology》 CAS 2012年第5期1037-1039,1054,共4页
[Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying ... [Objective] The aim of this study was investigated the rice yield, nitrogen uptake and ^15-fertilizer fate at different transplanting density to provide scientific ba- sis for improving the yield of rice and applying reasonably fertilizer. [Method] A field experiment was carried out to study the effect of different transplanting density on rice yield, nitrogen (N) absorption, sources of N uptake by rice and the N balance in the plant-soil systems by using ^15-labelled urea. [Result] There were no significant differences in rice yields and total N uptakes by rice between treatments 30 cm × 30 cm and 40 cm × 40 cm, but the yield of rice and total N absorption in the two treatments were remarkably higher than those in 50 cm × 50 cm treatment. The amounts of total N uptake by rice were in the range of 112.3-162.7 kg/hm2 in the three transplanting densities. The result showed that about 1/3 of the total N uptake by rice was supplied by application fertilizer and the other 2/3 was obtained from the soil N pool. The ^15N-labelled urea absorbed by rice, residual in soil and lost accounted for 16.3%-26.1%, 17.0%-20.9% and 53.0%-66.7% of the total fertilizer, respectively. A great deal of ^15N-labelled urea was lost during the rice growing season. [Conclusion] Considering the rice yield and environmental protection, the transplanting density of 30 cm×30 cm was recommended in the hilly area of Sichuan basin in the southwest China. 展开更多
关键词 Rice yield nitrogen uptake and balance ^15N-labeled urea ^15N fate Transplanting density
下载PDF
Effects of Green Manure Rotation on Rice Growth Dynamics and Nitrogen Uptake and Utilization 被引量:3
7
作者 张立进 杨滨娟 +2 位作者 黄国勤 陈洪俊 刘康 《Agricultural Science & Technology》 CAS 2015年第5期962-967,共6页
This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics impr... This study aimed to comprehensive evaluation of different winter green manure on characterization of nitrogen uptake and utilization, to provide the basis for N fertilizer reasonable operation and characteristics improvement of nitrogen nutrition in rice high-yield cultivation. This experiment was set to compare milk vetch, rapeseed,ryegrass and mixed of green manure on rice yield, rice growth dynamics and nitrogen uptake and utilization in rice. The results showed that among 4 different winter green manure, the treatment of MV-R-R(milk vetch-rice-rice) for the early rice yield was the most than others treatments. Compared with RG-R-R(ryegrass-rice-rice), RPR-R(rapeseed-rice-rice), MS-R-R(mixed green manure-rice-rice), the treatment of MVR-R inceased by 6.61%, 3.29%, 0.78%, respectively. The treatment of MV-R-R in N content in plant of rice was maximized in the tillering, booting, heading and maturity periods, respectively higher than the average of other treatments 9.68%, 19.72%,6.23% and 8.66%. At tillering, booting, heading and maturity, the treatment of MV-R-R were the highest in N uptake, RP-R-R minimum. The N periodic accumulation for MV-R-R were higher than other treatments in the tillering to booting, booting to heading and heading to maturity periods. The rates respectively were 21.81%, 68.73% and286.5%. In addition, N periodic accumulation and its ratio to total in the heading to maturity was minimum, maximum before tillering under green manure rotation system.So the cropping system of milk vetch-rice-rice could increase nitrogen use efficiency and improve N cycling. 展开更多
关键词 Winter green manure Rice yield nitrogen uptake and utilization Paddy field
下载PDF
Effects of Nitrogen Fertilization on the Growth and N Uptake of Late-sowing Winter Oilseed Rape (Brassica napus L.) 被引量:1
8
作者 程博 晁赢 +2 位作者 马霓 张春雷 李光明 《Agricultural Science & Technology》 CAS 2012年第6期1282-1286,共5页
[Objective] The aim of this work was to analyze the N fertilization on the vegetative growth and N uptake of different winter rapeseed varieties at wintering stage. [Method] In two consecutive years (2009-2011), two... [Objective] The aim of this work was to analyze the N fertilization on the vegetative growth and N uptake of different winter rapeseed varieties at wintering stage. [Method] In two consecutive years (2009-2011), two winter rapeseed varieties (B. napus L.), an early maturity variety Zhongyou 116 (ZY116) and a middle-late application maturity variety Zhongyouza 12 (ZYZ12) were employed. Field experiments with different N levels (0, 90, 180, 270, 360 kg N/hm 2 ) were designed. At the wintering stage, the dry matter weight, the nitrogen content and concentration of plants, leaf nitrate reductase activity (NRA) and seed yields were investigated. [Result] The shoot dry matter of ZY116 increased rapidly when N rate ranged from 0 to 180 kg/hm 2 , and it raised slightly when N rate ranged from 180 to 360 kg/hm 2 . The shoot dry matter of ZYZ12 were changed in a single peak curve; the peak of shoot dry matter appeared at 270 kg N/hm 2 . The N concentration and N content in shoot and root increased rapidly when the N rate changed from 90 to 180 kg/hm 2 . Moreover, the N concentration and N content root of in ZYZ12 were much higher than that of ZY116. Present study revealed that the changed trend of leaf nitrate reductase activities (NRA) were significantly increased at the N rate of 180 kg/hm 2 in ZY116 and ZYZ12 compared with the N rate of 90 kg/hm 2 in two years. [Conclusion] Optimal nitrogen application significantly increased the dry weights and N uptake at wintering stage as well as increasing the yield of winter oilseed rape. 展开更多
关键词 Late-sowing Winter oilseed rape (B. napus L.) Dry matter weight nitrogen uptake Nitrate reductase activity (NRA)
下载PDF
Effects of Continuous Nitrogen Application on Grain Yield and Nitrogen Uptake and Utilization in Winter Wheat-Summer Maize Rotation System
9
作者 司贤宗 王宜伦 +2 位作者 韩燕来 刘蒙蒙 谭金芳 《Agricultural Science & Technology》 CAS 2013年第3期478-482,489,共6页
[Objective] This study aimed to achieve high yield and stable yield of win- ter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer. [Method] Effects of continuous nitr... [Objective] This study aimed to achieve high yield and stable yield of win- ter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer. [Method] Effects of continuous nitrogen application on grain yield, economic profit, nitrogen uptake and utilization efficiency, and soil inorganic nitrogen accumulation in winter wheat-summer maize rotation system were investigated. [Re- sult] Nitrogen application could significantly increase the y(eld of the winter wheat- summer maize rotation system, which increased by 17.76%-30.32% and 22.24%- 46.63% in two rotation cycles, respectively. The yield of the winter wheat-summer maize rotation system was the maximum in two rotation cycles with nitrogen appli- cation amount of 660.0 kg/hm2, which reached respectively 23 391.19 and 23 444.35 kg/hm2, the yield and economic benefit were the highest, the nitrogen fertilizer use efficiency was 22.2% and 30.7%, the agronomic efficiency was 8.3 and 11.3 kg/kg. However, the nitrogen fertilizer use efficiency and agronomic efficiency between ni- trogen application amount of 540.0 and 660.0 kg/hm2 showed no significant differ- ence. After two rotation cycles, inorganic nitrogen accumulation in 0-40 cm soil with nitrogen application amount of 540.0 kg/hm2 was almost equal to that before experi- ment. [Conclusion] Under the experimental conditions, comprehensively considering the grain yield, economic profit, nitrogen fertilizer efficiency and soil inorganic nitro- gen balance, the optimal nitrogen application amount was 625.3-660.0 kg/hm2 in high-yield winter wheat-summer maize rotation system. 展开更多
关键词 Continuing nitrogen application Winter wheat-summer maize rotation YIELD nitrogen uptake and utilization
下载PDF
Effects of Nitrogen Application Level on Rice Nutrient Uptake and Ammonia Volatilization 被引量:16
10
作者 YU Qiao-gang YE Jing +6 位作者 YANG Shao-na FU Jian-rong MA Jun-wei SUN Wan-chun JIANG Li-na WANG Qiang WANG Jian-mei 《Rice science》 SCIE 2013年第2期139-147,共9页
The effects of different nitrogen application levels on nutrient uptake and ammonia volatilization were studied with the rice cultivar Zheyou 12 as a material.The accumulative amounts of nitrogen,phosphorus and potass... The effects of different nitrogen application levels on nutrient uptake and ammonia volatilization were studied with the rice cultivar Zheyou 12 as a material.The accumulative amounts of nitrogen,phosphorus and potassium in rice plants across all growth stages showed a trend to increase with increasing nitrogen application levels from 0 to 270 kg/hm 2,but decreased at nitrogen application levels exceeding 270 kg/hm 2.Moreover,the accumulative uptake of nitrogen,phosphorus and potassium by the rice plants was increased by application of organic manure in combination with 150 kg/hm 2 nitrogen.The nitrogen uptake was high during the jointing to heading stages.Correlation analysis showed that rice yield was positively correlated with the accumulative uptake of nitrogen,phosphorus and potassium by the rice plants.The highest correlation coefficient observed was between the amount of nitrogen uptake and rice yield.The rate and accumulative amounts of ammonia volatilization increased with increasing nitrogen fertilizer application level.Compared with other stages,the rate and accumulative amount of ammonia volatilization were higher after base fertilizer application.The ammonia volatilization rates in response to the nitrogen application levels of 270 kg/hm 2 and 330 kg/hm 2 were much higher than those in the other treatments.The loss of nitrogen through ammonia volatilization accounted for 23.9% of the total applied nitrogen at the nitrogen application level of 330 kg/hm 2. 展开更多
关键词 RICE nitrogen nutrient uptake ammonia volatilization
下载PDF
Effects of Plant Density and Nitrogen Application Rate on Grain Yield and Nitrogen Uptake of Super Hybrid Rice 被引量:12
11
作者 LIN Xian-qing ZHU De-feng CHEN Hui-zhe ZHANG Yu-ping 《Rice science》 SCIE 2009年第2期138-142,共5页
The nitrogen uptake, yield and its components for two super-high-yielding hybrid rice combinations, Guodao 6 and Eryou 7954 were investigated under different plant densities (15, 18, and 21 plants/m^2) and different... The nitrogen uptake, yield and its components for two super-high-yielding hybrid rice combinations, Guodao 6 and Eryou 7954 were investigated under different plant densities (15, 18, and 21 plants/m^2) and different nitrogen application rates (120, 150, 180, and 210 kg/hm^2). The experiment was conducted on loam soil during 2004-2006 at the experimental farm of the China National Rice Research Institute in Hangzhou, China. In these years, the two hybrid rice cleady showed higher yield at a plant density of 15 plants/m^2 with a nitrogen application rate of 180 kg/hm^2. Guodao 6 produced an average grain yield of 10 215.6 kg/hm^2 across the three years, while the yield of Eryou 7954 was 9 633.0 kg/hm^2. With fewer plants per unit-area and larger plants in the plots, the two hybrid rice produced more panicles per plant in three years. The highest nitrogen uptake of the two hybrid rice was at a plant density of 15 plants/m^2 with a nitrogen application rate of 180 kg/hm^2. Further increasing nitrogen application rate was not advantageous for nitrogen uptake in super-high-yielding rice under the same plant density. 展开更多
关键词 super-high-yielding cultivation hybrid rice grain yield nitrogen uptake plant density nitrogen application rate
下载PDF
Synergistic Effects of Nitrogen Amendments and Ethylene on Atmospheric Methane Uptake under a Temperate Old-growth Forest 被引量:6
12
作者 徐星凯 韩琳 +1 位作者 罗献宝 韩士杰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期843-854,共12页
An increase in atmospheric nitrogen (N) deposition can promote soil acidification, which may increase the release of ethylene (C2H4) under forest floors. Unfortunately, knowledge of whether increasing N deposition... An increase in atmospheric nitrogen (N) deposition can promote soil acidification, which may increase the release of ethylene (C2H4) under forest floors. Unfortunately, knowledge of whether increasing N deposition and C2H4 releases have synergistic effects on soil methane (CH4) uptake is limited and certainly deserves to be examined. We conducted some field measurements and laboratory experiments to examine this issue. The addition of (NH4)2SO4 or NH4Cl at a rate of 45 kg N ha-1 yr-1 reduced the soil CH4 uptake under a temperate old-growth forest in northeast China, and there were synergistic effects of N amendments in the presence of C2H4 concentrations equal to atmospheric CH4 concentration on the soil CH4 uptake, particularly in the NH4Cl-treated plots. Effective concentrations of added C2H4 on the soil CH4 uptake were smaller in NH+4 -treated plots than in KNO3-treated plots. The concentration of ca 0.3 μl C2H4 L-1 in the headspace gases reduced by 20% soil atmospheric CH4 uptake in the NH4Cl-treated plots, and this concentration was easily produced in temperate forest topsoils under short-term anoxic conditions. Together with short-term stimulating effects of N amendments and soil acidification on C2H4 production from forest soils, our observations suggest that knowledge of synergistic effects of NH+4 , rather than NO3- , amendments and C2H4 on the in situ soil CH4 uptake is critical for understanding the role of atmospheric N deposition and cycling of C2H4 under forest floors in reducing global atmospheric CH4 uptake by forests. Synergistic functions of NH4+ -N deposition and C2H4 release due to soil acidification in reducing atmospheric CH4 uptake by forests are discussed. 展开更多
关键词 methane uptake ETHYLENE nitrogen amendment synergistic effect FOREST
下载PDF
Phosphorus Uptake and Utilisation Efficiencies of Different Wheat Cultivars Based on a Sand-Culture Screening System 被引量:13
13
作者 N.K.HOWES S.E.SMITH ZHUYONGGUAN 《Pedosphere》 SCIE CAS CSCD 2002年第4期329-337,共9页
A sand-based culture system using rock phosphate (P) was developed to simulate the situation in alkalinesoils, with respect to the dominant P form, and five wheat cultivars (Excalibur, Brookton, Krichauff, Westoniaand... A sand-based culture system using rock phosphate (P) was developed to simulate the situation in alkalinesoils, with respect to the dominant P form, and five wheat cultivars (Excalibur, Brookton, Krichauff, Westoniaand Sunco) were tested in this screening system to compare their P uptake and utilisation efficiencies. Resultsshowed that these cultivars differed significantly in their ability to acquire P from the sparingly available form(rock phosphate in this case). The accumulation of P by Brookton was three times that by Krichauff. Pconcentrations in plant tissues did not differ significantly, indicating that all cultivars were similar in Putilisation efficiency. A further experiment showed that the greater ability of a cultivar to take up P fromsparingly available form was related to the ability of a cultivar to acidify the rhizosphere. Seed P content wasa confounding factor in this system, and the use of relatively uniform seed with similar P content, preferablylow, was conducive to a successful outcome of the screening process. 展开更多
关键词 phosphorus efficiency sand-culture uptake wheat genotypes
下载PDF
Cd Toxicity and Accumulation in Rice Plants Vary with Soil Nitrogen Status and Their Genotypic Difference can be Partly Attributed to Nitrogen Uptake Capacity 被引量:6
14
作者 Du Qin CHEN Ming-xue +4 位作者 ZHOU Rong CHAO Zhao-yun ZHU Zhi-wei SHAO Guo-sheng WANG Guang-ming 《Rice science》 SCIE 2009年第4期283-291,共9页
Two indica rice genotypes, viz. Milyang 46 and Zhenshan 97B differing in Cd accumulation and tolerance were used as materials in a hydroponic system consisting of four Cd levels (0, 0.1, 1.0 and 5.0 μmol/L) and thr... Two indica rice genotypes, viz. Milyang 46 and Zhenshan 97B differing in Cd accumulation and tolerance were used as materials in a hydroponic system consisting of four Cd levels (0, 0.1, 1.0 and 5.0 μmol/L) and three N levels (23.2, 116.0 and 232.0 mg/L) to study the effects of nitrogen status and nitrogen uptake capacity on Cd accumulation and tolerance in rice plants. N-efficient rice genotype, Zhenshan 97B, accumulated less Cd and showed higher Cd tolerance than N-inefficient rice genotype, Milyang 46. There was consistency between nitrogen uptake capacity and Cd tolerance in rice plants. Increase of N level in solution slightly increased Cd concentration in shoots but significantly increased in roots of both genotypes. Compared with the control at low N level, Cd tolerance in both rice genotypes could be significantly enhanced under normal N level, but no significant difference was observed between the Cd tolerances under normal N (116.0 mg/L) and high N (232.0 mg/L) conditions. The result proved that genotypic differences in Cd accumulation and toxicity could be, at least in part, attributed to N uptake capacity in rice plants. 展开更多
关键词 rice (Oryza sativa) nitrogen CADMIUM genotypic difference nitrogen uptake capacity TOLERANCE
下载PDF
Comparative studies on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata var. liui (rhodophyta) and Ulva pertusa (chlorophyta) II. Feedback controls of intracellular nitrogen pools on nitrogen uptake 被引量:5
15
作者 LIU Jing Wen, DONG Shuang Lin (Aquaculture Research Laboratory, Ocean University of Qingdao, Qingdao 266003, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2001年第3期323-327,共5页
The potential feedback by intracellular nitrogen pools on maximum N uptake (NH + 4) rate were determined for Gracilaria tenuistipitata var. liui and Ulva pertusa. The results of correlation matrix analyz... The potential feedback by intracellular nitrogen pools on maximum N uptake (NH + 4) rate were determined for Gracilaria tenuistipitata var. liui and Ulva pertusa. The results of correlation matrix analyzing showed that the surge uptake of ammonium seemed related to rapid changes in small intracellular pools of inorganic nitrogen or small peptide and amino acids rather than to changes in TN content of the macroalgae. The assimilation rates of nitrogen of U. pertusa and G. tenuistipitata increased slowly during N starvation and were mainly regulated by amino acids and some incorporation of amino acids into macromolecules. From ecological point of view, the fast growing and uptaking nutrient U. pertusa is more suitable to improve water quality in integrated shrimp culture ponds in which external nutrient supplies are usually high and constant during the culture period, while G. tenuistipitata var. liui is more suitable to be polycultured in a waters with intermittence supply of nutrients. 展开更多
关键词 nitrogen pools uptake kinetic MACROALGAE feedback
下载PDF
Effects of Atmospheric CO_2 Enrichment, Applied Nitrogen and Soil Moisture on Dry Matter Accumulation and Nitrogen Uptake in Spring Wheat 被引量:18
16
作者 LIFUSHENG KANGSHAOZHONG 《Pedosphere》 SCIE CAS CSCD 2002年第3期207-218,共12页
Spring wheat (Triticum aestivum L. cv. Dingxi No. 8654) was treated with twoconcentrations of atmospheric CO_2 (350 and 700 μmol mol^(-1)), two levels of soil moisture(well-watered and drought) and five rates of nitr... Spring wheat (Triticum aestivum L. cv. Dingxi No. 8654) was treated with twoconcentrations of atmospheric CO_2 (350 and 700 μmol mol^(-1)), two levels of soil moisture(well-watered and drought) and five rates of nitrogen fertilizer (0, 50, 100, 150, and 200 mgkg^(-1) soil) to study the atmospheric CO_2 concentration effect on dry matter accumulation and Nuptake of spring wheat. The effects of CO_2 enrichment on the shoot and total mass depended largelyon soil nitrogen level, and the shoot and total mass increased significantly in the moderate to highN treatments but did not increase significantly in the low N treatment. Enriched CO_2 concentrationdid not increase more shoot and total mass in the drought treatment than in the well-wateredtreatment. Thus, elevated CO_2 did not ameliorate the depressive effects of drought and nitrogenstress. In addition, root mass decreased slightly and root/shoot ratio decreased significantly dueto CO_2 enrichment in no N treatment under well-watered condition. Enriched CO_2 decreased shoot Ncontent and shoot and total N uptake; but it reduced root N content and uptake slightly. Shootcritical N concentration was lower for spring wheat grown at 700 μmol mol^(-1) CO_2 than at 350μmol mol^(-1) CO_2 in both well-watered and drought treatments. The critical N concentrations were16 and 19 g kg^(-1) for the well-watered treatment and drought treatment at elevated CO_2 and 21 and26 g kg^(-1) at ambient CO_2, respectively. The reductions in the movement of nutrients to theplant roots through mass flow due to the enhancement in WUE (water use efficiency) and the increasein N use efficiency at elevated CO_2 could elucidate the reduction of shoot and root Nconcentrations. 展开更多
关键词 CO_2 enrichment critical N concentration dry matter nitrogen uptake soilmoisture
下载PDF
A New Method to Determine Central Wavelength and Optimal Bandwidth for Predicting Plant Nitrogen Uptake in Winter Wheat 被引量:5
17
作者 YAO Xin-feng YAO Xia +4 位作者 TIAN Yong-chao NI Jun LIU Xiao-jun CAO Wei-xing ZHU Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第5期788-802,共15页
Plant nitrogen (N) uptake is a good indicator of crop N status. In this study, a new method was designed to determine the central wavelength, optimal bandwidth and vegetation indices for predicting plant N uptake (... Plant nitrogen (N) uptake is a good indicator of crop N status. In this study, a new method was designed to determine the central wavelength, optimal bandwidth and vegetation indices for predicting plant N uptake (g N m-2) in winter wheat (Triticum aestivum L.). The data were collected from the ground-based hyperspectral reflectance measurements in eight field experiments on winter wheat of different years, eco-sites, varieties, N rates, sowing dates, and densities. The plant N uptake index (PNUI) based on NDVI of 807 nm combined with 736 nm was selected as the optimal vegetation index, and a linear model was developed with R2 of 0.870 and RMSE of 1.546 g N m-2 for calibration, and R2 of 0.834, RMSE of 1.316 g N m-2, slope of 0.934, and intercept of 0.001 for validation. Then, the effect of the bandwidth of central wavelengths on model performance was determined based on the interaction between central wavelength and bandwidth expansion. The results indicated that the optimal bandwidth varies with the changes of the central wavelength and with the interaction between the two bands in one vegetation index. These findings are important for prediction and diagnosis of plant N uptake more precise and accurate in crop management. 展开更多
关键词 central wavelength optimal bandwidth plant nitrogen uptake winter wheat
下载PDF
Mechanisms of Enhanced Rice Growth and Nitrogen Uptake by Nitrate 被引量:6
18
作者 DUAN Ying-Hua YIN Xiao-Ming ZHANG Ya-Li SHEN Qi-Rong 《Pedosphere》 SCIE CAS CSCD 2007年第6期697-705,共9页
Rice is being increasingly cultivated in intermittently irrigated regions and also in aerobic soil in which Nitrate (NO3^- ) plays important role in nutrition of plant. However, there is no information regarding the... Rice is being increasingly cultivated in intermittently irrigated regions and also in aerobic soil in which Nitrate (NO3^- ) plays important role in nutrition of plant. However, there is no information regarding the influence of nitrate on the overall growth and uptake of nitrogen (N) in rice plant. Solution culture experiments were carried out to study the effects of NO^3- on the plant growth, uptake of N, and uptake kinetics of NH4^+ in four typical rice (Oryza sativa L.) cultivars (conventional indica, conventional japonica, hybrid indica, and hybrid japonica), and on plasma membrane potential in roots of two conventional rice cultivars (indica and japonica) at the seedling stage. The results obtained indicated that a ratio of 50/50 NH4^+-N/NO3^--N increased the average biomass of rice shoots and roots by 20% when compared with that of 100/0 NH4^+-N/NO3^--N. In case of the 50/50 ratio, as compared with the 100/0 ratio, total N accumulated in shoots and roots of rice increased on an average by 42% and 57%, respectively. Conventional indica responds to NO3^- more than any other cultivars that were tested. The NO^3- supply increased the maximum uptake rate (Vmax) of NH4^+ by rice but did not show any effect on the apparent Michaelis-Menten constant (Km) value, with the average value of Vmax for NH4^+ among the four cultivars being increased by 31.5% in comparison with those in the absence of NO3^-. This suggested that NO3^- significantly increased the numbers of the ammonium transporters. However, the lack of effect on the Km value also suggested that the presence of NO3^- had no effect on the affinity of the transporters for NH4^+. The plasma membrane potential in the roots of conventional indica and japonica were greatly increased by the addition of NO3^- , suggesting that NO3^- could improve the uptake of N by roots of the rice plant. In conclusion, the mechanisms by which NO3^- enhances the growth and N uptake of rice plant was found by the increased value of Vmax of NH4^+ and increased plasma membrane potential. Thus promotion of nitrification in paddy soil is of great significance for improving the production of rice. 展开更多
关键词 ammonium uptake nitrate nutrition nitrogen uptake plasma membrane potential RICE
下载PDF
Anoxic Biological Phosphorus Uptake in A^2O Process 被引量:10
19
作者 WANG Xiaolian(王晓莲) +3 位作者 WANG Shuying(王淑莹) PENG Yongzhen(彭永臻) 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第4期516-521,共6页
A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (D... A lab-scale anaerobic-anoxic-oxic (A2O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal and enhance the denitrifying phosphorus removal in A2O bioreactors. Sludge analysis confirmed that the average anoxic P uptake accounted for approximately 70% the total amount of P uptake, and the ratio of anoxic P uptake rate to aerobic P uptake rate was 69%. In addition, nitrate concentration in the anoxic phase and different organic substrate introduced into the anaerobic phase had significant effect on the anoxic P uptake. Compared with conventional A2O processes, good removal efficiencies of COD, phosphorus, ammonia and total nitrogen (92.3%, 95.5%, 96% and 79.5%, respectively) could be achieved in the anoxic P uptake system, and aeration energy consumption was saved 25%. By controlling the nitrate recirculation flow in the anoxic zone, anoxic P uptake could be enhanced, which solved the competition for organic substrates among poly-P organisms and denitrifiers successfully under the COD limiting conditions. Therefore, in wastewater treatment plants the control system should be applied according to the practical situation to optimize the operation. 展开更多
关键词 A^2O process nitrogen and phosphorus removal denitrifying phosphorus removing bacteria nitrate recirculation flow
下载PDF
Nitrogen uptake regime regulated by ice melting during austral summer in the Prydz Bay, Antarctica 被引量:2
20
作者 Run Zhang Qiang Ma +3 位作者 Min Chen Minfang Zheng Jianping Cao Yusheng Qiu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第8期1-7,共7页
Using a combination of stable isotope(15N) and radionuclide(226Ra) analyses, we examine possible controls on the interactions between melting ice and the uptake of nitrogen in the Prydz Bay during the 2006 austral sum... Using a combination of stable isotope(15N) and radionuclide(226Ra) analyses, we examine possible controls on the interactions between melting ice and the uptake of nitrogen in the Prydz Bay during the 2006 austral summer.We find that specific rates of uptake for nitrate and ammonium correlate positively to their concentrations, thus suggesting a substrate effect. In the study area, we observe that regions along open, oceanic water have high fratios(nitrate uptake/nitrate+ammonium uptake), while areas near the Amery Ice Shelf have significantly low fratios. Further analysis reveals a negative correlation between the f-ratio and the melt water fraction, thus implying that the melting of ice plays an essential role in regulating pelagic N dynamics in the Southern Ocean(SO). Stratification, produced by melting ice, should profoundly affect the efficiency of the SO’s biological pump and consequently affect the concentration of CO2 in the atmosphere. Results presented in this study add information to an already significant base of understanding of the controls on pelagic C and N dynamics in the SO. This provides unique insights for either interpreting past changes in geologic records or for predicting future climate change trends. 展开更多
关键词 nitrogen uptake REGIME ICE MELTING PRYDZ Bay ANTARCTICA
下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部