Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyz...Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions.展开更多
In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)an...In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)and the Ag_(2)S content were optimized. The best 0.5% Ag_(2)S/KTa_(0.5)Nb_(0.5)O_(3)(KTN) sample presents an enhanced photocatalytic performance in ammonia synthesis than KTN and Ag_(2)S. Under simulated sunlight, the NH_(3)generation rate of 0.5% Ag_(2)S/KTN reaches 2.0 times that of pure KTN. Under visible light, the reaction rate ratio of the two catalysts is 6.0.XRD, XPS, and TEM analysis revealed that Ag2S was intimately decorated on the KTN nanocubes surface, which promoted the electron transfer between the two semiconductors. The band structure investigation indicated that the Ag_(2)S/KTN heterojunction established a type-Ⅱ band alignment with intimate contact, thus realizing the effective transfer and separation of photogenerated carriers. The change in charge separation was considered as the main reason for the enhanced photocatalytic performance. Interestingly, the Ag_(2)S/KTN composite exhibited higher NH3generation performance under the combined action of ultrasonic vibration and simulated sunlight. The enhanced piezo-photocatalytic performance can be ascribed that the piezoelectric effect of KTN improved the bulk separation of charge carriers in KTN. This study not only provides a potential catalyst for photocatalytic nitrogen fixation but also shows new ideas for the design of highly efficient catalysts via semiconductor modification and external field coupling.展开更多
Corchorus olitorius (Jew’s mallow), is one of the African indigenous leafy vegetables increasingly getting attention as a possible contributor of both micronutrients and bioactive compounds including proteins, lipids...Corchorus olitorius (Jew’s mallow), is one of the African indigenous leafy vegetables increasingly getting attention as a possible contributor of both micronutrients and bioactive compounds including proteins, lipids, fiber and vitamin C to human nutrition. Leaves of Corchorus olitorius have been found to have high level of phytochemicals: flavonoids, polyphenols, tannins, and saponins that possess strong radical scavenging activity and antioxidant power. In the arid and semi-arid areas of the world, drought is the main limiting factor affecting plant productivity and influences almost all aspects of plant biology. Water stress deficit is known to cause oxidative stress condition that has generally been reported to elevate phenolic antioxidants in various crops including Jew’s mallow. On the other hand, fertilization is crucial for crop management and high yield, it also affects nutritional value of the food plants. Nitrogen (N) fertilization affects health and nutritional value, including mineral content, fatty acid profile, anti-oxidative capacity and polyphenol levels and composition. The possible effects of fertilization should be considered when deciding on fertilization regime, to optimize both plant physiology, productivity and food-related effects. Nitrogen is an important element for Jew’s mallow production since it responds well to it. However, appropriate amounts of nutrients need to be provided to crops at the right time to favor both crop growth, yield and quality. Different reports confirmed that addition or increase of N, negatively affects the total phenolics and total flavonoids, and reduces accumulation of defense-related secondary metabolites resulting in lower oxidative capacity. Increased secondary metabolite production during water deficit and low nitrogen in the soil has been reported as a stress mechanism by most plants. However, further research is required to explore the biochemical response of Jew’s mallow to water deficit and nitrogen fertilization.展开更多
Change trend of Chinese urban residents' per capita food-nitrogen annual consumption from 1981 to 2007 was analyzed and predicted by using ARIMA time-series model in order to reveal the change of urban food-nitrogen ...Change trend of Chinese urban residents' per capita food-nitrogen annual consumption from 1981 to 2007 was analyzed and predicted by using ARIMA time-series model in order to reveal the change of urban food-nitrogen consumption during the China's urbanization process.Results showed that after 1980s,the annual consumption of Chinese urban residents' food-nitrogen had a change trend of " increase-decrease-increase" and generally presented as a slight increasing trend;With the acceleration of rapid economic development and urbanization process,Chinese urban residents' food-nitrogen consumption will still keep a rising trend in future,and also has a large rising space.展开更多
Field experiments were conducted at Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan, during winter 2003~2004; 2004~2005 to evaluate the effect of nitrogen; sulfur levels; methods of nitrogen applicatio...Field experiments were conducted at Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan, during winter 2003~2004; 2004~2005 to evaluate the effect of nitrogen; sulfur levels; methods of nitrogen application on canola (Brassica napus L. cv. Bulbul-98) under rainfed conditions. Four levels of S (0, 10, 20,; 30 kg/ha); three levels of N (40, 60,; 80 kg/ha); a control treatment with both nutrients at zero level were included in the experiments. Sulfur levels were applied at sowing while N levels were applied by three methods (100% soil application, 90% soil+10% foliar application,; 80% soil +20% foliar application). The experiments were laid out in randomized complete block (RCB) design having four replications. Oil content increased significantly up to 20 kg S/ha but further increase in S level did not enhance oil content. Glucosinolate content increased from 13.6 to 24.6 μmol/g as S rate was increased from 0 to 30 kg/ha. Protein content increased from 22.4% to 23.2% as S rate was increased from 0 to 20 kg/ha. Oil content responded negatively to the increasing N levels. The highest N level resulted in the highest values for protein (23.5%); glucosinolate (19.9 μmol/g) contents. Methods of N application had no significant impact on any parameters under study.展开更多
The ecological effect of reclaimed water irrigation and fertilizer application on the soil environment is receiving more attention.Soil microbial activity and nitrogen(N)levels are important indicators of the effect...The ecological effect of reclaimed water irrigation and fertilizer application on the soil environment is receiving more attention.Soil microbial activity and nitrogen(N)levels are important indicators of the effect of reclaimed water irrigation on environment.This study evaluated soil physicochemical properties and microbial community structure in soils irrigated with reclaimed water and receiving varied amounts of N fertilizer.The results indicated that the reclaimed water irrigation increased soil electrical conductivity(EC)and soil water content(SWC).The N treatment has highly significant effect on the ACE,Chao,Shannon(H)and Coverage indices.Based on a 16S ribosomal RNA(16S rRNA)sequence analysis,the Proteobacteria,Gemmatimonadetes and Bacteroidetes were more abundant in soil irrigated with reclaimed water than in soil irrigated with clean water.Stronger clustering of microbial communities using either clean or reclaimed water for irrigation indicated that the type of irrigation water may have a greater influence on the structure of soil microbial community than N fertilizer treatment.Based on a canonical correspondence analysis(CCA)between the species of soil microbes and the chemical properties of the soil,which indicated that nitrate N(NO3-–-N)and total phosphorus(TP)had significant impact on abundance of Verrucomicrobia and Gemmatimonadetes,meanwhile the p H and organic matter(OM)had impact on abundance of Firmicutes and Actinobacteria significantly.It was beneficial to the improvement of soil bacterial activity and fertility under 120 mg kg^-1 N with reclaimed water irrigation.展开更多
The nitrogen nutrition index(NNI)is a reliable indicator for diagnosing crop nitrogen(N)status.However,there is currently no specific vegetation index for the NNI inversion across multiple growth periods.To overcome t...The nitrogen nutrition index(NNI)is a reliable indicator for diagnosing crop nitrogen(N)status.However,there is currently no specific vegetation index for the NNI inversion across multiple growth periods.To overcome the limitations of the traditional direct NNI inversion method(NNI_(T1))of the vegetation index and traditional indirect NNI inversion method(NNI_(T2))by inverting intermediate variables including the aboveground dry biomass(AGB)and plant N concentration(PNC),this study proposed a new NNI remote sensing index(NNI_(RS)).A remote-sensing-based critical N dilution curve(Nc_(_RS))was set up directly from two vegetation indices and then used to calculate NNI_(RS).Field data including AGB,PNC,and canopy hyperspectral data were collected over four growing seasons(2012–2013(Exp.1),2013–2014(Exp.2),2014–2015(Exp.3),2015–2016(Exp.4))in Beijing,China.All experimental datasets were cross-validated to each of the NNI models(NNI_(T1),NNI_(T2)and NNI_(RS)).The results showed that:(1)the NNI_(RS)models were represented by the standardized leaf area index determining index(sLAIDI)and the red-edge chlorophyll index(CI_(red edge))in the form of NNI_(RS)=CI_(red edge)/(a×sLAIDI~b),where"a"equals 2.06,2.10,2.08 and 2.02 and"b"equals 0.66,0.73,0.67 and 0.62 when the modeling set data came from Exp.1/2/4,Exp.1/2/3,Exp.1/3/4,and Exp.2/3/4,respectively;(2)the NNI_(RS)models achieved better performance than the other two NNI revised methods,and the ranges of R2 and RMSE were 0.50–0.82 and 0.12–0.14,respectively;(3)when the remaining data were used for verification,the NNI_(RS)models also showed good stability,with RMSE values of 0.09,0.18,0.13 and 0.10,respectively.Therefore,it is concluded that the NNI_(RS)method is promising for the remote assessment of crop N status.展开更多
AIM To evaluate the efficacy and safety of liquid nitrogen cryotherapy as a primary or rescue treatment for BE,with and without dysplasia,or intramucosal adenocarcinoma (IMC).METHODS This was a retrospective,single-ce...AIM To evaluate the efficacy and safety of liquid nitrogen cryotherapy as a primary or rescue treatment for BE,with and without dysplasia,or intramucosal adenocarcinoma (IMC).METHODS This was a retrospective,single-center study carried out in a tertiary care center including 45 patients with BE who was treatment-na?ve or who had persistent intestinal metaplasia(IM),dysplasia,or IMC despite prior therapy.Barrett's mucosa was resected via EMR when clinically appropriate,then patients underwent cryotherapy until eradication or until deemed to have failed treatment.Surveillance biopsies were taken at standard intervals.RESULTS From 2010 through 2014,33 patients were studied regarding the efficacy of cryotherapy.Overall,29 patients (88%) responded to cryotherapy,with 84% having complete regression of all dysplasia and cancer.Complete eradication of cancer and dysplasia was seen in 75% of subjects with IMC; the remaining two subjects did not respond to cryotherapy.Following cryotherapy,15 patients with high-grade dysplasia (HGD) had 30% complete regression,50% IM,and 7% low-grade dysplasia (LGD); one subject had persistent HGD.Complete eradication of dysplasia occurred in all 5 patients with LGD.In 5 patients with IM,complete regression occurred in 4,and IM persisted in one.In 136 cryotherapy sessions amongst 45 patients,adverse events included chest pain (1%),stricture (4%),and one gastrointestinal bleed in a patient on dual antiplatelet therapy who had previously undergone EMR.CONCLUSION Cryotherapy is an efficacious and safe treatment modality for Barrett's esophagus with and without dysplasia or intramucosal adenocarcinoma.展开更多
Electrocatalytic reduction of nitrogen into ammonia(NH_(3))is a highly attractive but challenging route for NH_(3)production.We propose to realize a synergetic work of multi reaction sites to overcome the limitation o...Electrocatalytic reduction of nitrogen into ammonia(NH_(3))is a highly attractive but challenging route for NH_(3)production.We propose to realize a synergetic work of multi reaction sites to overcome the limitation of sustainable NH_(3)production.Herein,using ruthenium-sulfur-carbon(Ru-S-C)catalyst as a prototype,we show that the Ru/S dual-site cooperates to catalyse eletrocatalytic nitrogen reduction reaction(eNRR)at ambient conditions.With the combination of theoretical calculations,in situ Raman spectroscopy,and experimental observation,we demonstrate that such Ru/S dual-site cooperation greatly facilitates the activation and first protonation of N_(2)in the rate-determining step of eNRR.As a result,Ru-S-C catalyst exhibits significantly enhanced eNRR performance compared with the routine Ru-N-C catalyst via a single-site catalytic mechanism.We anticipate that our specifically designed dual-site collaborative catalytic mechanism will open up a new way to offers new opportunities for advancing sustainable NH_(3)production.展开更多
The photoinduced reactions of aryl halides with carbazolyl nitrogen anion,in dimethyl sulfoxide,yield the corresponding N-arylated products.These reactions are suggested in terms of the S;Nl mechaism of nucleophilic s...The photoinduced reactions of aryl halides with carbazolyl nitrogen anion,in dimethyl sulfoxide,yield the corresponding N-arylated products.These reactions are suggested in terms of the S;Nl mechaism of nucleophilic substitution.展开更多
In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was...In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was evaluated at different ammonium (12-40 mg/L of NH4+-N), nitrate (35-45 mg/L of NO3--N), and dissolved oxygen (DO) (0.1-1.5 mg/L) concentrations, with a hydraulic retention time of 12 h. The pyrite reactor supported the SNAD process with a maximum nitrogen removal efficiency of 139.5 mg/(L·d) when the DO concentration was in the range of 0.8-1.5 mg/L. This range, however, limited the denitrification efficiency of the reactor, which decreased from 90.0% ± 5.3% in phases II-V to 67.9% ± 7.2% in phases VI and VII. Sulfate precipitated as iron sulfate (FeSO4/Fe2(SO4)3) and sodium sulfate (Na2SO4) minerals during the experiment. The sulfur reactor did not respond well to nitrification with a low and unstable ammonium removal efficiency, while denitrification occurred with a nitrate removal efficiency of 97.8%. In the pyrite system, the nitrifying bacterium Nitrosomonas sp. was present, and its relative abundance increased from 0.1% to 1.1%, while the autotrophic denitrifying genera Terrimonas, Ferruginibacter, and Denitratimonas dominated the community. Thiobacillus, Sulfurovum, and Trichlorobacter were the most abundant genera in the sulfur reactor during the entire experiment.展开更多
The ideal reducing reagent in testing available nitrogen of soil by Conway Methodis Devard‘s alloy.The optimum ratio of soil:Devard’s alloy:1.0N NaOH solution is 5.0g:0.2g:5ml.When reaction goes on at 30℃ for 4 hou...The ideal reducing reagent in testing available nitrogen of soil by Conway Methodis Devard‘s alloy.The optimum ratio of soil:Devard’s alloy:1.0N NaOH solution is 5.0g:0.2g:5ml.When reaction goes on at 30℃ for 4 hours,the rate of soil NO<sub>3</sub>-N reduction is about 90%,and the recovery rate of soil NH<sub>4</sub>-N is about 95%.Some organic nitrogen can be measured at thesame time.This method is defined as the Modified Conway Method and the soil N-min is r=0.982(n=10).In predicting soil nitrogen supplying power,the Modified Conway Method takesonly 1/6 of time needed by Conway Method.The Modified Conway Method can also be used forthe measure of soil N-min.展开更多
基金This work was funded by Ningxia Hui Autonomous Region Key Research and Development Project(2021BEF02004),Central Finance Forestry Reform and Development Fund“Forest Seed Cultivation”.
文摘Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions.
基金financially supported by National Natural Science Foundation of China (Grant No. 22172144)Nature Science Foundation of Zhejiang Province (Grant No. LY20B030004)。
文摘In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)and the Ag_(2)S content were optimized. The best 0.5% Ag_(2)S/KTa_(0.5)Nb_(0.5)O_(3)(KTN) sample presents an enhanced photocatalytic performance in ammonia synthesis than KTN and Ag_(2)S. Under simulated sunlight, the NH_(3)generation rate of 0.5% Ag_(2)S/KTN reaches 2.0 times that of pure KTN. Under visible light, the reaction rate ratio of the two catalysts is 6.0.XRD, XPS, and TEM analysis revealed that Ag2S was intimately decorated on the KTN nanocubes surface, which promoted the electron transfer between the two semiconductors. The band structure investigation indicated that the Ag_(2)S/KTN heterojunction established a type-Ⅱ band alignment with intimate contact, thus realizing the effective transfer and separation of photogenerated carriers. The change in charge separation was considered as the main reason for the enhanced photocatalytic performance. Interestingly, the Ag_(2)S/KTN composite exhibited higher NH3generation performance under the combined action of ultrasonic vibration and simulated sunlight. The enhanced piezo-photocatalytic performance can be ascribed that the piezoelectric effect of KTN improved the bulk separation of charge carriers in KTN. This study not only provides a potential catalyst for photocatalytic nitrogen fixation but also shows new ideas for the design of highly efficient catalysts via semiconductor modification and external field coupling.
文摘Corchorus olitorius (Jew’s mallow), is one of the African indigenous leafy vegetables increasingly getting attention as a possible contributor of both micronutrients and bioactive compounds including proteins, lipids, fiber and vitamin C to human nutrition. Leaves of Corchorus olitorius have been found to have high level of phytochemicals: flavonoids, polyphenols, tannins, and saponins that possess strong radical scavenging activity and antioxidant power. In the arid and semi-arid areas of the world, drought is the main limiting factor affecting plant productivity and influences almost all aspects of plant biology. Water stress deficit is known to cause oxidative stress condition that has generally been reported to elevate phenolic antioxidants in various crops including Jew’s mallow. On the other hand, fertilization is crucial for crop management and high yield, it also affects nutritional value of the food plants. Nitrogen (N) fertilization affects health and nutritional value, including mineral content, fatty acid profile, anti-oxidative capacity and polyphenol levels and composition. The possible effects of fertilization should be considered when deciding on fertilization regime, to optimize both plant physiology, productivity and food-related effects. Nitrogen is an important element for Jew’s mallow production since it responds well to it. However, appropriate amounts of nutrients need to be provided to crops at the right time to favor both crop growth, yield and quality. Different reports confirmed that addition or increase of N, negatively affects the total phenolics and total flavonoids, and reduces accumulation of defense-related secondary metabolites resulting in lower oxidative capacity. Increased secondary metabolite production during water deficit and low nitrogen in the soil has been reported as a stress mechanism by most plants. However, further research is required to explore the biochemical response of Jew’s mallow to water deficit and nitrogen fertilization.
基金Supported by State Council Special Fund for Pollution Sources Survey (WPXC2007C200)~~
文摘Change trend of Chinese urban residents' per capita food-nitrogen annual consumption from 1981 to 2007 was analyzed and predicted by using ARIMA time-series model in order to reveal the change of urban food-nitrogen consumption during the China's urbanization process.Results showed that after 1980s,the annual consumption of Chinese urban residents' food-nitrogen had a change trend of " increase-decrease-increase" and generally presented as a slight increasing trend;With the acceleration of rapid economic development and urbanization process,Chinese urban residents' food-nitrogen consumption will still keep a rising trend in future,and also has a large rising space.
基金the Higher Education Commission (HEC) of Pakistan
文摘Field experiments were conducted at Cereal Crops Research Institute, Pirsabak, Nowshera, Pakistan, during winter 2003~2004; 2004~2005 to evaluate the effect of nitrogen; sulfur levels; methods of nitrogen application on canola (Brassica napus L. cv. Bulbul-98) under rainfed conditions. Four levels of S (0, 10, 20,; 30 kg/ha); three levels of N (40, 60,; 80 kg/ha); a control treatment with both nutrients at zero level were included in the experiments. Sulfur levels were applied at sowing while N levels were applied by three methods (100% soil application, 90% soil+10% foliar application,; 80% soil +20% foliar application). The experiments were laid out in randomized complete block (RCB) design having four replications. Oil content increased significantly up to 20 kg S/ha but further increase in S level did not enhance oil content. Glucosinolate content increased from 13.6 to 24.6 μmol/g as S rate was increased from 0 to 30 kg/ha. Protein content increased from 22.4% to 23.2% as S rate was increased from 0 to 20 kg/ha. Oil content responded negatively to the increasing N levels. The highest N level resulted in the highest values for protein (23.5%); glucosinolate (19.9 μmol/g) contents. Methods of N application had no significant impact on any parameters under study.
基金the financial support for this research from the National High-Tech R&D Program of China (2012AA101404)the National Natural Science Foundation of China (51209208, 51479201)
文摘The ecological effect of reclaimed water irrigation and fertilizer application on the soil environment is receiving more attention.Soil microbial activity and nitrogen(N)levels are important indicators of the effect of reclaimed water irrigation on environment.This study evaluated soil physicochemical properties and microbial community structure in soils irrigated with reclaimed water and receiving varied amounts of N fertilizer.The results indicated that the reclaimed water irrigation increased soil electrical conductivity(EC)and soil water content(SWC).The N treatment has highly significant effect on the ACE,Chao,Shannon(H)and Coverage indices.Based on a 16S ribosomal RNA(16S rRNA)sequence analysis,the Proteobacteria,Gemmatimonadetes and Bacteroidetes were more abundant in soil irrigated with reclaimed water than in soil irrigated with clean water.Stronger clustering of microbial communities using either clean or reclaimed water for irrigation indicated that the type of irrigation water may have a greater influence on the structure of soil microbial community than N fertilizer treatment.Based on a canonical correspondence analysis(CCA)between the species of soil microbes and the chemical properties of the soil,which indicated that nitrate N(NO3-–-N)and total phosphorus(TP)had significant impact on abundance of Verrucomicrobia and Gemmatimonadetes,meanwhile the p H and organic matter(OM)had impact on abundance of Firmicutes and Actinobacteria significantly.It was beneficial to the improvement of soil bacterial activity and fertility under 120 mg kg^-1 N with reclaimed water irrigation.
基金supported by the earmarked fund for China Agriculture Research System(CARS-03)the National Key Research and Development Program of China(2017YFD0201501 and 2016YFD020060306)the National Natural Science Foundation of China(41701375 and 61661136003)。
文摘The nitrogen nutrition index(NNI)is a reliable indicator for diagnosing crop nitrogen(N)status.However,there is currently no specific vegetation index for the NNI inversion across multiple growth periods.To overcome the limitations of the traditional direct NNI inversion method(NNI_(T1))of the vegetation index and traditional indirect NNI inversion method(NNI_(T2))by inverting intermediate variables including the aboveground dry biomass(AGB)and plant N concentration(PNC),this study proposed a new NNI remote sensing index(NNI_(RS)).A remote-sensing-based critical N dilution curve(Nc_(_RS))was set up directly from two vegetation indices and then used to calculate NNI_(RS).Field data including AGB,PNC,and canopy hyperspectral data were collected over four growing seasons(2012–2013(Exp.1),2013–2014(Exp.2),2014–2015(Exp.3),2015–2016(Exp.4))in Beijing,China.All experimental datasets were cross-validated to each of the NNI models(NNI_(T1),NNI_(T2)and NNI_(RS)).The results showed that:(1)the NNI_(RS)models were represented by the standardized leaf area index determining index(sLAIDI)and the red-edge chlorophyll index(CI_(red edge))in the form of NNI_(RS)=CI_(red edge)/(a×sLAIDI~b),where"a"equals 2.06,2.10,2.08 and 2.02 and"b"equals 0.66,0.73,0.67 and 0.62 when the modeling set data came from Exp.1/2/4,Exp.1/2/3,Exp.1/3/4,and Exp.2/3/4,respectively;(2)the NNI_(RS)models achieved better performance than the other two NNI revised methods,and the ranges of R2 and RMSE were 0.50–0.82 and 0.12–0.14,respectively;(3)when the remaining data were used for verification,the NNI_(RS)models also showed good stability,with RMSE values of 0.09,0.18,0.13 and 0.10,respectively.Therefore,it is concluded that the NNI_(RS)method is promising for the remote assessment of crop N status.
文摘AIM To evaluate the efficacy and safety of liquid nitrogen cryotherapy as a primary or rescue treatment for BE,with and without dysplasia,or intramucosal adenocarcinoma (IMC).METHODS This was a retrospective,single-center study carried out in a tertiary care center including 45 patients with BE who was treatment-na?ve or who had persistent intestinal metaplasia(IM),dysplasia,or IMC despite prior therapy.Barrett's mucosa was resected via EMR when clinically appropriate,then patients underwent cryotherapy until eradication or until deemed to have failed treatment.Surveillance biopsies were taken at standard intervals.RESULTS From 2010 through 2014,33 patients were studied regarding the efficacy of cryotherapy.Overall,29 patients (88%) responded to cryotherapy,with 84% having complete regression of all dysplasia and cancer.Complete eradication of cancer and dysplasia was seen in 75% of subjects with IMC; the remaining two subjects did not respond to cryotherapy.Following cryotherapy,15 patients with high-grade dysplasia (HGD) had 30% complete regression,50% IM,and 7% low-grade dysplasia (LGD); one subject had persistent HGD.Complete eradication of dysplasia occurred in all 5 patients with LGD.In 5 patients with IM,complete regression occurred in 4,and IM persisted in one.In 136 cryotherapy sessions amongst 45 patients,adverse events included chest pain (1%),stricture (4%),and one gastrointestinal bleed in a patient on dual antiplatelet therapy who had previously undergone EMR.CONCLUSION Cryotherapy is an efficacious and safe treatment modality for Barrett's esophagus with and without dysplasia or intramucosal adenocarcinoma.
文摘Electrocatalytic reduction of nitrogen into ammonia(NH_(3))is a highly attractive but challenging route for NH_(3)production.We propose to realize a synergetic work of multi reaction sites to overcome the limitation of sustainable NH_(3)production.Herein,using ruthenium-sulfur-carbon(Ru-S-C)catalyst as a prototype,we show that the Ru/S dual-site cooperates to catalyse eletrocatalytic nitrogen reduction reaction(eNRR)at ambient conditions.With the combination of theoretical calculations,in situ Raman spectroscopy,and experimental observation,we demonstrate that such Ru/S dual-site cooperation greatly facilitates the activation and first protonation of N_(2)in the rate-determining step of eNRR.As a result,Ru-S-C catalyst exhibits significantly enhanced eNRR performance compared with the routine Ru-N-C catalyst via a single-site catalytic mechanism.We anticipate that our specifically designed dual-site collaborative catalytic mechanism will open up a new way to offers new opportunities for advancing sustainable NH_(3)production.
文摘The photoinduced reactions of aryl halides with carbazolyl nitrogen anion,in dimethyl sulfoxide,yield the corresponding N-arylated products.These reactions are suggested in terms of the S;Nl mechaism of nucleophilic substitution.
基金supported by the Science Foundation Ireland(SFI)through the SFI Research Professorship Programme entitled"Innovative Energy Technologies for Biofuels,Bioenergy and a Sustainable Irish Bioeconomy"(IETSBIO3Grant No.15/RP/2763)the Research Infrastructure Research Grant Platform for Biofuel Analysis(Grant No.16/RI/3401).
文摘In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was evaluated at different ammonium (12-40 mg/L of NH4+-N), nitrate (35-45 mg/L of NO3--N), and dissolved oxygen (DO) (0.1-1.5 mg/L) concentrations, with a hydraulic retention time of 12 h. The pyrite reactor supported the SNAD process with a maximum nitrogen removal efficiency of 139.5 mg/(L·d) when the DO concentration was in the range of 0.8-1.5 mg/L. This range, however, limited the denitrification efficiency of the reactor, which decreased from 90.0% ± 5.3% in phases II-V to 67.9% ± 7.2% in phases VI and VII. Sulfate precipitated as iron sulfate (FeSO4/Fe2(SO4)3) and sodium sulfate (Na2SO4) minerals during the experiment. The sulfur reactor did not respond well to nitrification with a low and unstable ammonium removal efficiency, while denitrification occurred with a nitrate removal efficiency of 97.8%. In the pyrite system, the nitrifying bacterium Nitrosomonas sp. was present, and its relative abundance increased from 0.1% to 1.1%, while the autotrophic denitrifying genera Terrimonas, Ferruginibacter, and Denitratimonas dominated the community. Thiobacillus, Sulfurovum, and Trichlorobacter were the most abundant genera in the sulfur reactor during the entire experiment.
文摘The ideal reducing reagent in testing available nitrogen of soil by Conway Methodis Devard‘s alloy.The optimum ratio of soil:Devard’s alloy:1.0N NaOH solution is 5.0g:0.2g:5ml.When reaction goes on at 30℃ for 4 hours,the rate of soil NO<sub>3</sub>-N reduction is about 90%,and the recovery rate of soil NH<sub>4</sub>-N is about 95%.Some organic nitrogen can be measured at thesame time.This method is defined as the Modified Conway Method and the soil N-min is r=0.982(n=10).In predicting soil nitrogen supplying power,the Modified Conway Method takesonly 1/6 of time needed by Conway Method.The Modified Conway Method can also be used forthe measure of soil N-min.