Critical algal blooms in great lakes increase the level of algal organic matters(AOMs),significantly altering the composition of natural organic matters(NOMs) in freshwater of lake.This study examined the AOM's c...Critical algal blooms in great lakes increase the level of algal organic matters(AOMs),significantly altering the composition of natural organic matters(NOMs) in freshwater of lake.This study examined the AOM's characteristics of Nitzschia palea(N.palea),one kind of the predominant diatom and an important biomarker of water quality in the great lakes of China,to investigate the effect of AOMs on the variation of NOMs in lakes and the process of algal energy.Excitation–emission matrix fluorescence(EEM) spectroscopy,synchronous fluorescence(SF) spectroscopy and deconvolution UV–vis(D-UV) spectroscopy were utilized to characterize AOMs to study the effects of nutrient loading on the composition change of AOMs.From results,it was revealed that the phosphorus is the limiting factor for N.palea's growth and the generation of both total organic carbon and amino acids but the nitrogen is more important for the generation of carbohydrates and proteins.EEM spectra revealed differences in the composition of extracellular organic matter and intracellular organic matter.Regardless of the nitrogen and phosphorus concentrations,aromatic proteins and soluble microbial products were the main components,but the nitrogen concentration had a significant impact on their composition.The SF spectra were used to study the AOMs for the first time and identified that the protein-like substances were the major component of AOMs,creating as a result of aromatic group condensation.The D-UV spectra showed carboxylic acid and esters were the main functional groups in the EOMs,with –OCH_3,–SO_2NH_2,–CN,–NH_2,–O– and –COCH_3functional groups substituting into benzene rings.展开更多
The physiological responses of Nitzschia palea Kvtzing, a freshwater diatom, to elevated CO2 were investigated and compared with those of a marine diatom, Chaetoceros muelleri Lemmermann previously reported. Elevated ...The physiological responses of Nitzschia palea Kvtzing, a freshwater diatom, to elevated CO2 were investigated and compared with those of a marine diatom, Chaetoceros muelleri Lemmermann previously reported. Elevated CO2 concentration to 700 μl/L increased the dissolved inorganic carbon (D!C) and lowered the pH in the cultures of N. palea, thus enhancing the growth by 4%-20% during the whole growth period. High CO2-grown N. palea cells showed lower levels of dark respiration rates and higher Ik values. Light-saturated photosynthetic rates and photosynthetic efficiencies decreased in N. palea with the doubling CO2 concentration in airflow to the bottom of cultures, although the doubling CO2 concentration in airflow to the surface cultures had few effects on these two photosynthetic parameters. N. palea cells were found to be capable of using HCO5 in addition to gaseous CO2, and the CO2 enrichment decreased their affinity for HCO5 and CO2. Although doubled CO2 level would enhance the biomass of N. patea and C. muelleri to different extents, compared with the marine diatom, it had a significant effect on the specific growth rates of N. palea. In addition, the responses of photosynthetic parameters of IV. palea to doubled CO2 concentration were almost opposite to those of C. muelleri.展开更多
基金the support of Fundamental Research Funds for the Central Universities (No.2015ZCQ-HJ-02)the National Natural Science Foundation of China (Nos.51578520,51378063,41273137 and 51108030)+1 种基金the Beijing Natural Science Foundation (No.8132033)Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology (No.QAK201306)
文摘Critical algal blooms in great lakes increase the level of algal organic matters(AOMs),significantly altering the composition of natural organic matters(NOMs) in freshwater of lake.This study examined the AOM's characteristics of Nitzschia palea(N.palea),one kind of the predominant diatom and an important biomarker of water quality in the great lakes of China,to investigate the effect of AOMs on the variation of NOMs in lakes and the process of algal energy.Excitation–emission matrix fluorescence(EEM) spectroscopy,synchronous fluorescence(SF) spectroscopy and deconvolution UV–vis(D-UV) spectroscopy were utilized to characterize AOMs to study the effects of nutrient loading on the composition change of AOMs.From results,it was revealed that the phosphorus is the limiting factor for N.palea's growth and the generation of both total organic carbon and amino acids but the nitrogen is more important for the generation of carbohydrates and proteins.EEM spectra revealed differences in the composition of extracellular organic matter and intracellular organic matter.Regardless of the nitrogen and phosphorus concentrations,aromatic proteins and soluble microbial products were the main components,but the nitrogen concentration had a significant impact on their composition.The SF spectra were used to study the AOMs for the first time and identified that the protein-like substances were the major component of AOMs,creating as a result of aromatic group condensation.The D-UV spectra showed carboxylic acid and esters were the main functional groups in the EOMs,with –OCH_3,–SO_2NH_2,–CN,–NH_2,–O– and –COCH_3functional groups substituting into benzene rings.
基金Supported by the National Natural Science Foundation of China (No.90411018,30270036) and by the Chinese Academy of Sciences
文摘The physiological responses of Nitzschia palea Kvtzing, a freshwater diatom, to elevated CO2 were investigated and compared with those of a marine diatom, Chaetoceros muelleri Lemmermann previously reported. Elevated CO2 concentration to 700 μl/L increased the dissolved inorganic carbon (D!C) and lowered the pH in the cultures of N. palea, thus enhancing the growth by 4%-20% during the whole growth period. High CO2-grown N. palea cells showed lower levels of dark respiration rates and higher Ik values. Light-saturated photosynthetic rates and photosynthetic efficiencies decreased in N. palea with the doubling CO2 concentration in airflow to the bottom of cultures, although the doubling CO2 concentration in airflow to the surface cultures had few effects on these two photosynthetic parameters. N. palea cells were found to be capable of using HCO5 in addition to gaseous CO2, and the CO2 enrichment decreased their affinity for HCO5 and CO2. Although doubled CO2 level would enhance the biomass of N. patea and C. muelleri to different extents, compared with the marine diatom, it had a significant effect on the specific growth rates of N. palea. In addition, the responses of photosynthetic parameters of IV. palea to doubled CO2 concentration were almost opposite to those of C. muelleri.