We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the elect...We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the electromagnetic field components at all interfaces, the induced monopole electromagnetic fields in the plasma are obtained in the frequency domain. An expression for the plasma electric resistance and reactance is derived and analyzed numerically for some representative parameters. Near the plasma resonant frequency, the plasma resistance evolves with frequency like a parallel RLC resonator with peak resistance at the plasma frequency pe, while the plasma reactance can be capacitive or inductive in nature depending on the frequency under consideration.展开更多
SiC MOSFET是一种高性能的电力电子器件,其开通/关断过程中积累/释放的栅电荷Q_(g)对MOSFET的开关速度、功率损耗等参数有重要影响。通常采用在栅极设置恒流源驱动,对时间进行积分的方法来测量Q_(g)。为了降低驱动复杂度,提高测试结果...SiC MOSFET是一种高性能的电力电子器件,其开通/关断过程中积累/释放的栅电荷Q_(g)对MOSFET的开关速度、功率损耗等参数有重要影响。通常采用在栅极设置恒流源驱动,对时间进行积分的方法来测量Q_(g)。为了降低驱动复杂度,提高测试结果精度和可视性,基于双脉冲测试平台的感性负载回路,改用耗尽型MOSFET限制栅极电流实现恒流充电,对SiC MOSFET进行测试。同时利用反馈电阻将较小的栅极电流信号转换为较大的电压信号。实验结果表明:在误差允许范围(±5%)内该测试方案能较为准确地测得SiC MOSFET的Q_(g),测试结果符合器件规格书曲线。展开更多
基金Supported by the Yarmouk Universitythe KUSTAR–KAIST Institution Fund
文摘We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the electromagnetic field components at all interfaces, the induced monopole electromagnetic fields in the plasma are obtained in the frequency domain. An expression for the plasma electric resistance and reactance is derived and analyzed numerically for some representative parameters. Near the plasma resonant frequency, the plasma resistance evolves with frequency like a parallel RLC resonator with peak resistance at the plasma frequency pe, while the plasma reactance can be capacitive or inductive in nature depending on the frequency under consideration.