In this paper,a new approach is proposed to determine whether the content of an image is authentic or modified with a focus on detecting complex image tampering.Detecting image tampering without any prior information ...In this paper,a new approach is proposed to determine whether the content of an image is authentic or modified with a focus on detecting complex image tampering.Detecting image tampering without any prior information of the original image is a challenging problem since unknown diverse manipulations may have different characteristics and so do various formats of images.Our principle is that image processing,no matter how complex,may affect image quality,so image quality metrics can be used to distinguish tampered images.In particular,based on the alteration of image quality in modified blocks,the proposed method can locate the tampered areas.Referring to four types of effective no-reference image quality metrics,we obtain 13 features to present an image.The experimental results show that the proposed method is very promising on detecting image tampering and locating the locally tampered areas especially in realistic scenarios.展开更多
To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used...To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used to construct a reference image by blurring a given image.Gradient similarity is included to obtain the gradient distortion measurement map,which can finely reflect the smallest possible changes in textures and details.Second,a saliency model is utilized to calculate image saliency.Specifically,an adaptive method is used to calculate the specific salient threshold of the blurred image,and the blurred image is binarized to yield the salient region map.Block-wise visual saliency serves as the weight to obtain the final image quality.Experimental results based on the image and video engineering database,categorial image quality database,and camera image database demonstrate that the proposed method correlates well with human judgment.Its computational complexity is also relatively low.展开更多
Recent studies on no-reference image quality assessment (NR-IQA) methods usually learn to evaluate the image quality by regressing from human subjective scores of the training samples. This study presented an NR-IQA m...Recent studies on no-reference image quality assessment (NR-IQA) methods usually learn to evaluate the image quality by regressing from human subjective scores of the training samples. This study presented an NR-IQA method based on the basic image visual parameters without using human scored image databases in learning. We demonstrated that these features comprised the most basic characteristics for constructing an image and influencing the visual quality of an image. In this paper, the definitions, computational method, and relationships among these visual metrics were described. We subsequently proposed a no-reference assessment function, which was referred to as a visual parameter measurement index (VPMI), based on the integration of these visual metrics to assess image quality. It is established that the maximum of VPMI corresponds to the best quality of the color image. We verified this method using the popular assessment database—image quality assessment database (LIVE), and the results indicated that the proposed method matched better with the subjective assessment of human vision. Compared with other image quality assessment models, it is highly competitive. VPMI has low computational complexity, which makes it promising to implement in real-time image assessment systems.展开更多
Image enhancement is a popular technique,which is widely used to improve the visual quality of images.While image enhancement has been extensively investigated,the relevant quality assessment of enhanced images remain...Image enhancement is a popular technique,which is widely used to improve the visual quality of images.While image enhancement has been extensively investigated,the relevant quality assessment of enhanced images remains an open problem,which may hinder further development of enhancement techniques.In this paper,a no-reference quality metric for digitally enhanced images is proposed.Three kinds of features are extracted for characterizing the quality of enhanced images,including non-structural information,sharpness and naturalness.Specifically,a total of 42 perceptual features are extracted and used to train a support vector regression(SVR) model.Finally,the trained SVR model is used for predicting the quality of enhanced images.The performance of the proposed method is evaluated on several enhancement-related databases,including a new enhanced image database built by the authors.The experimental results demonstrate the efficiency and advantage of the proposed metric.展开更多
In order to apply the deep learning to the stereo image quality evaluation,two problems need to be solved:The first one is that we have a bit of training samples,another is how to input the dimensional image’s left v...In order to apply the deep learning to the stereo image quality evaluation,two problems need to be solved:The first one is that we have a bit of training samples,another is how to input the dimensional image’s left view or right view.In this paper,we transfer the 2D image quality evaluation model to the stereo image quality evaluation,and this method solves the first problem;use the method of principal component analysis is used to fuse the left and right views into an input image in order to solve the second problem.At the same time,the input image is preprocessed by phase congruency transformation,which further improves the performance of the algorithm.The structure of the deep convolution neural network consists of four convolution layers and three maximum pooling layers and two fully connected layers.The experimental results on LIVE3D image database show that the prediction quality score of the model is in good agreement with the subjective evaluation value.展开更多
Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate eval...Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate evaluator for visual experience,thus the modeling of human visual system(HVS)is a core issue for objective IQA and visual experience optimization.The traditional model based on black box fitting has low interpretability and it is difficult to guide the experience optimization effectively,while the model based on physiological simulation is hard to integrate into practical visual communication services due to its high computational complexity.For bridging the gap between signal distortion and visual experience,in this paper,we propose a novel perceptual no-reference(NR)IQA algorithm based on structural computational modeling of HVS.According to the mechanism of the human brain,we divide the visual signal processing into a low-level visual layer,a middle-level visual layer and a high-level visual layer,which conduct pixel information processing,primitive information processing and global image information processing,respectively.The natural scene statistics(NSS)based features,deep features and free-energy based features are extracted from these three layers.The support vector regression(SVR)is employed to aggregate features to the final quality prediction.Extensive experimental comparisons on three widely used benchmark IQA databases(LIVE,CSIQ and TID2013)demonstrate that our proposed metric is highly competitive with or outperforms the state-of-the-art NR IQA measures.展开更多
Video compression technologies are essential in video streaming application because they could save a great amount of network resources. However compressed videos are also extremely sensitive to packet loss which is i...Video compression technologies are essential in video streaming application because they could save a great amount of network resources. However compressed videos are also extremely sensitive to packet loss which is inevitable in today's best effort IP network. Therefore we think accurate evaluation of packet loss impairment on compressed video is very important. In this work, we develop an analytic model to describe these impairments without the reference of the original video (NR) and propose an impairment metric based on the model, which takes into account both impairment length and impairment strength. To evaluate an impaired frame or video, we design a detection and evaluation algorithm (DE algorithm) to compute the above metric value. The DE algorithm has low computational complexity and is currently being implemented in the real-time monitoring module of our HDTV over IP system. The impairment metric and DE algorithm could also be used in adaptive system or be used to compare diffeient error concealment strategies.展开更多
In this paper we propose a novel method for video quality prediction using video classification. In essence, our ap- proach can serve two goals: (1) To measure the video quality of compressed video sequences without r...In this paper we propose a novel method for video quality prediction using video classification. In essence, our ap- proach can serve two goals: (1) To measure the video quality of compressed video sequences without referencing to the original uncompressed videos, i.e., to realize No-Reference (NR) video quality evaluation; (2) To predict quality scores for uncompressed video sequences at various bitrates without actually encoding them. The use of our approach can help realize video streaming with ideal Quality of Service (QoS). Our approach is a low complexity solution, which is specially suitable for application to mobile video streaming where the resources at the handsets are scarce.展开更多
Traditional image quality assessment methods use the hand-crafted features to predict the image quality score,which cannot perform well in many scenes.Since deep learning promotes the development of many computer visi...Traditional image quality assessment methods use the hand-crafted features to predict the image quality score,which cannot perform well in many scenes.Since deep learning promotes the development of many computer vision tasks,many IQA methods start to utilize the deep convolutional neural networks(CNN)for IQA task.In this paper,a CNN-based multi-scale blind image quality predictor is proposed to extract more effectivity multi-scale distortion features through the pyramidal convolution,which consists of two tasks:A distortion recognition task and a quality regression task.For the first task,image distortion type is obtained by the fully connected layer.For the second task,the image quality score is predicted during the distortion recognition progress.Experimental results on three famous IQA datasets show that the proposed method has better performance than the previous traditional algorithms for quality prediction and distortion recognition.展开更多
Technological advancements continue to expand the communications industry’s potential.Images,which are an important component in strengthening communication,are widely available.Therefore,image quality assessment(IQA...Technological advancements continue to expand the communications industry’s potential.Images,which are an important component in strengthening communication,are widely available.Therefore,image quality assessment(IQA)is critical in improving content delivered to end users.Convolutional neural networks(CNNs)used in IQA face two common challenges.One issue is that these methods fail to provide the best representation of the image.The other issue is that the models have a large number of parameters,which easily leads to overfitting.To address these issues,the dense convolution network(DSC-Net),a deep learning model with fewer parameters,is proposed for no-reference image quality assessment(NR-IQA).Moreover,it is obvious that the use of multimodal data for deep learning has improved the performance of applications.As a result,multimodal dense convolution network(MDSC-Net)fuses the texture features extracted using the gray-level co-occurrence matrix(GLCM)method and spatial features extracted using DSC-Net and predicts the image quality.The performance of the proposed framework on the benchmark synthetic datasets LIVE,TID2013,and KADID-10k demonstrates that the MDSC-Net approach achieves good performance over state-of-the-art methods for the NR-IQA task.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.60971095 and No.61172109)Artificial Intelligence Key Laboratory of Sichuan Province(Grant No.2012RZJ01)the Fundamental Research Funds for the Central Universities(Grant No.DUT13RC201)
文摘In this paper,a new approach is proposed to determine whether the content of an image is authentic or modified with a focus on detecting complex image tampering.Detecting image tampering without any prior information of the original image is a challenging problem since unknown diverse manipulations may have different characteristics and so do various formats of images.Our principle is that image processing,no matter how complex,may affect image quality,so image quality metrics can be used to distinguish tampered images.In particular,based on the alteration of image quality in modified blocks,the proposed method can locate the tampered areas.Referring to four types of effective no-reference image quality metrics,we obtain 13 features to present an image.The experimental results show that the proposed method is very promising on detecting image tampering and locating the locally tampered areas especially in realistic scenarios.
基金The National Natural Science Foundation of China(No.61762004,61762005)the National Key Research and Development Program(No.2018YFB1702700)+1 种基金the Science and Technology Project Founded by the Education Department of Jiangxi Province,China(No.GJJ200702,GJJ200746)the Open Fund Project of Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology(No.JETRCNGDSS201901,JELRGBDT202001,JELRGBDT202003).
文摘To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used to construct a reference image by blurring a given image.Gradient similarity is included to obtain the gradient distortion measurement map,which can finely reflect the smallest possible changes in textures and details.Second,a saliency model is utilized to calculate image saliency.Specifically,an adaptive method is used to calculate the specific salient threshold of the blurred image,and the blurred image is binarized to yield the salient region map.Block-wise visual saliency serves as the weight to obtain the final image quality.Experimental results based on the image and video engineering database,categorial image quality database,and camera image database demonstrate that the proposed method correlates well with human judgment.Its computational complexity is also relatively low.
基金supported by the National Natural Science Foundation of China under Grants No.61773094,No.61573080,No.91420105,and No.61375115National Program on Key Basic Research Project(973 Program)under Grant No.2013CB329401+1 种基金National High-Tech R&D Program of China(863 Program)under Grant No.2015AA020505Sichuan Province Science and Technology Project under Grants No.2015SZ0141 and No.2018ZA0138
文摘Recent studies on no-reference image quality assessment (NR-IQA) methods usually learn to evaluate the image quality by regressing from human subjective scores of the training samples. This study presented an NR-IQA method based on the basic image visual parameters without using human scored image databases in learning. We demonstrated that these features comprised the most basic characteristics for constructing an image and influencing the visual quality of an image. In this paper, the definitions, computational method, and relationships among these visual metrics were described. We subsequently proposed a no-reference assessment function, which was referred to as a visual parameter measurement index (VPMI), based on the integration of these visual metrics to assess image quality. It is established that the maximum of VPMI corresponds to the best quality of the color image. We verified this method using the popular assessment database—image quality assessment database (LIVE), and the results indicated that the proposed method matched better with the subjective assessment of human vision. Compared with other image quality assessment models, it is highly competitive. VPMI has low computational complexity, which makes it promising to implement in real-time image assessment systems.
基金supported in part by the National Natural Science Foundation of China under Grant 61379143in part by the Fundamental Research Funds for the Central Universities under Grant 2015QNA66in part by the Qing Lan Project of Jiangsu Province
文摘Image enhancement is a popular technique,which is widely used to improve the visual quality of images.While image enhancement has been extensively investigated,the relevant quality assessment of enhanced images remains an open problem,which may hinder further development of enhancement techniques.In this paper,a no-reference quality metric for digitally enhanced images is proposed.Three kinds of features are extracted for characterizing the quality of enhanced images,including non-structural information,sharpness and naturalness.Specifically,a total of 42 perceptual features are extracted and used to train a support vector regression(SVR) model.Finally,the trained SVR model is used for predicting the quality of enhanced images.The performance of the proposed method is evaluated on several enhancement-related databases,including a new enhanced image database built by the authors.The experimental results demonstrate the efficiency and advantage of the proposed metric.
文摘In order to apply the deep learning to the stereo image quality evaluation,two problems need to be solved:The first one is that we have a bit of training samples,another is how to input the dimensional image’s left view or right view.In this paper,we transfer the 2D image quality evaluation model to the stereo image quality evaluation,and this method solves the first problem;use the method of principal component analysis is used to fuse the left and right views into an input image in order to solve the second problem.At the same time,the input image is preprocessed by phase congruency transformation,which further improves the performance of the algorithm.The structure of the deep convolution neural network consists of four convolution layers and three maximum pooling layers and two fully connected layers.The experimental results on LIVE3D image database show that the prediction quality score of the model is in good agreement with the subjective evaluation value.
基金This work was supported by National Natural Science Foundation of China(Nos.61831015 and 61901260)Key Research and Development Program of China(No.2019YFB1405902).
文摘Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate evaluator for visual experience,thus the modeling of human visual system(HVS)is a core issue for objective IQA and visual experience optimization.The traditional model based on black box fitting has low interpretability and it is difficult to guide the experience optimization effectively,while the model based on physiological simulation is hard to integrate into practical visual communication services due to its high computational complexity.For bridging the gap between signal distortion and visual experience,in this paper,we propose a novel perceptual no-reference(NR)IQA algorithm based on structural computational modeling of HVS.According to the mechanism of the human brain,we divide the visual signal processing into a low-level visual layer,a middle-level visual layer and a high-level visual layer,which conduct pixel information processing,primitive information processing and global image information processing,respectively.The natural scene statistics(NSS)based features,deep features and free-energy based features are extracted from these three layers.The support vector regression(SVR)is employed to aggregate features to the final quality prediction.Extensive experimental comparisons on three widely used benchmark IQA databases(LIVE,CSIQ and TID2013)demonstrate that our proposed metric is highly competitive with or outperforms the state-of-the-art NR IQA measures.
文摘Video compression technologies are essential in video streaming application because they could save a great amount of network resources. However compressed videos are also extremely sensitive to packet loss which is inevitable in today's best effort IP network. Therefore we think accurate evaluation of packet loss impairment on compressed video is very important. In this work, we develop an analytic model to describe these impairments without the reference of the original video (NR) and propose an impairment metric based on the model, which takes into account both impairment length and impairment strength. To evaluate an impaired frame or video, we design a detection and evaluation algorithm (DE algorithm) to compute the above metric value. The DE algorithm has low computational complexity and is currently being implemented in the real-time monitoring module of our HDTV over IP system. The impairment metric and DE algorithm could also be used in adaptive system or be used to compare diffeient error concealment strategies.
文摘In this paper we propose a novel method for video quality prediction using video classification. In essence, our ap- proach can serve two goals: (1) To measure the video quality of compressed video sequences without referencing to the original uncompressed videos, i.e., to realize No-Reference (NR) video quality evaluation; (2) To predict quality scores for uncompressed video sequences at various bitrates without actually encoding them. The use of our approach can help realize video streaming with ideal Quality of Service (QoS). Our approach is a low complexity solution, which is specially suitable for application to mobile video streaming where the resources at the handsets are scarce.
文摘Traditional image quality assessment methods use the hand-crafted features to predict the image quality score,which cannot perform well in many scenes.Since deep learning promotes the development of many computer vision tasks,many IQA methods start to utilize the deep convolutional neural networks(CNN)for IQA task.In this paper,a CNN-based multi-scale blind image quality predictor is proposed to extract more effectivity multi-scale distortion features through the pyramidal convolution,which consists of two tasks:A distortion recognition task and a quality regression task.For the first task,image distortion type is obtained by the fully connected layer.For the second task,the image quality score is predicted during the distortion recognition progress.Experimental results on three famous IQA datasets show that the proposed method has better performance than the previous traditional algorithms for quality prediction and distortion recognition.
文摘Technological advancements continue to expand the communications industry’s potential.Images,which are an important component in strengthening communication,are widely available.Therefore,image quality assessment(IQA)is critical in improving content delivered to end users.Convolutional neural networks(CNNs)used in IQA face two common challenges.One issue is that these methods fail to provide the best representation of the image.The other issue is that the models have a large number of parameters,which easily leads to overfitting.To address these issues,the dense convolution network(DSC-Net),a deep learning model with fewer parameters,is proposed for no-reference image quality assessment(NR-IQA).Moreover,it is obvious that the use of multimodal data for deep learning has improved the performance of applications.As a result,multimodal dense convolution network(MDSC-Net)fuses the texture features extracted using the gray-level co-occurrence matrix(GLCM)method and spatial features extracted using DSC-Net and predicts the image quality.The performance of the proposed framework on the benchmark synthetic datasets LIVE,TID2013,and KADID-10k demonstrates that the MDSC-Net approach achieves good performance over state-of-the-art methods for the NR-IQA task.